Is this "population" free of infection?

Estimating CI's on proportions

* How confident can I be in my estimate? (e.g., 0 of 10 vs. 0 of 30)
* How different is the estimate of prevalence in two species, populations, times, ... (quick and dirty)
* Skip the "simple" normal approximations
* will always be a little wrong, sometimes nonsensical)
* with modern stats packages, there is no need to resort to such a bad approximation

Estimating CI's on proportions

Use Wilson score interval (w/o continuity correction)...

$$
\begin{aligned}
& \quad C L=\frac{1}{1+\frac{1}{n} z^{2}}\left[\hat{p}+\frac{1}{2 n} z^{2} \pm \sqrt{\frac{1}{n}} \hat{p}(1-\hat{p})+\frac{1}{4 n^{2}} z^{2}\right] \\
& \text { where } z=1-\alpha / 2=1.96
\end{aligned}
$$

it's ugly, but it works well
binom.confint() function in binom package
http:/ / vassarstats.net/prop1.html

Adjusting prevalence estimates for imperfect tests

$\phi_{\text {True }}=\frac{\phi_{\text {Apparent }}+\text { specificity }-1}{\text { sensitivity }+ \text { specificity }-1}$
$C L_{\text {Adjusted }}=\frac{C L_{\text {Apparent }}+\text { specificity }-1}{\text { sensitivity }+ \text { specificity }-1}$
epi.prev() function in epiR package

Rogan W, Gladen B (1978). Estimating prevalence from results of a screening test. American
Journal of Epidemiology 107: 71-76.

Detection varies with titer!

* We treat infections as binary (at least for microparasites)
Virus titers vary by orders of magnitude

The P(detect ranavirus) increases with titer

Take care in interpreting prevalence data

Just a snapshot in time
High incidence \neq lots of disease
at least some individuals of many species are tolerant of RV
Low incidence \neq lack of disease or impact
if individuals die or recover quickly, they will not be sampled and so will not be part of prevalence estimate

Take care in interpreting prevalence data

Prevalence - the proportion infected (or diseased) at some time point

Incidence - the rate of new infections (or occurrence of disease) over an interval

Take care in interpreting prevalence data

Scenario A:
Long-lasting infections (e.g., long time course, low mortality \& recovery)

Prevalence $=7 / 10$
Incidence $=7$ (or $7 / 8$ at risk)

Scenario B
Short infections (e.g., rapid recovery)

Prevalence $=4 / 10$
Incidence $=7$ (or $7 / 8$ at risk)

Take care in interpreting prevalence data

Combining prevalence with other data is usually more informative:

Are there dead or dying animals?
P (disease) often increases with intensity of infection low prevalence of high intensity infections is more consistent with a dieoff than low intensity infections
Susceptibility of the species of interest
low prevalence in a very susceptible species would be interpreted
differently than similar prevalence in a very toler differently than similar prevalence in a very tolerant species
Timing/phenology
low prevalence in young larvae could mean low susceptibility transmission OR very early in an epidemic

Comparing prevalence: Chi-square tests

Can accommodate multiple groups (e.g., ponds, species, whatnot)

- Simple to calculate (even by hand)
* Requires that expected count in all cells be ≥ 5 which may be difficult with low sample sizes and / or low (or very high) prevalence

Comparing prevalence: Chi-square tests

If there is no difference between the two populations, we would expect the proportion infected to be the same in both: $30 / 80=0.375$ Of the 35 sampled in Pop A, we expect $\mathbf{3 5 \times 0 . 3 7 5 = 1 3 . 1 2 5}$ infections. Similarly we would expect $45 \times 0.375=16.875$ infected in Pop B.

The expected number of uninfected in each pond is calculated similarly:
$35 \times(50 / 80)=35 \times 0.625=21.875$ uninfected in population A, and $45 \times(50 / 80)=45 \times 0.625=28.125$

Comparing prevalence: Chi-square tests

Note: with 2×2 table, a correction is usually applied by stats packages

Comparing prevalence: Margins \& test options

	Pop A	Pop B Tota	chisq.test() function in R stat NOTE: when simulate.p.value=TRUE assumes both R \& C fixed	
Infected	10	$20 \quad 30$	${ }_{\text {a }}^{\text {asherse }}$	her test () function in
Not infected	25	25.50		
Total	35	4580		W. test() function
Experimental Design	What is fixed?		Large sample	Small sample
Model I	Total sam	e size, N	Chi-square G-test	G-test with Yates correction
Model II	Either ro column t	$\begin{aligned} & \text { totals }(R) \text { or } \\ & \text { als (C) } \end{aligned}$	Chi-square G-test Barnard's test	G-test with Yates correction Barnard's test
Model III	Both row column t	$\begin{aligned} & \begin{array}{l} \text { otals }(R) \& \\ \text { als }(C) \end{array} \\ & \hline \end{aligned}$	Chi-square Fisher's exact	Fisher's exact

Comparing/modeling prevalence: logistic regression

Accommodates one many
categorical (e.g., pond, species) or
continuous predictors (e.g., pond size, salinity)
Models the probability of some binary outcome (i.e. infection, death) in a pond (or individual)

Comparing/modeling prevalence: logistic regression

The logit transform of this probability is a linear function of the predictors
$\operatorname{logit}\left(p_{i}\right)=\ln \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{n} x_{i}$

Comparing/modeling prevalence: logistic regression

$\operatorname{logit}\left(p_{i}\right)=\ln \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{n} x_{i}$
We can recover the probability by simple backtransformations

$$
\begin{aligned}
& \exp \left(\operatorname{logit}\left(p_{i}\right)\right)=\left(\frac{p_{i}}{1-p_{i}}\right)=e^{\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{n} x_{i}} \\
& p_{i}=\frac{e^{\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{n} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{n} x_{i}}}=\frac{1}{e^{-\left(\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{n} x_{i}\right)}}
\end{aligned}
$$

Can make statements about how the probability or odds of infection (or death) change with the predictor Be careful about the units!

Detecting die-offs or other temporary events

General advice

* Remember that $P=0.05$ is not a magic threshold for what does / does not matter!
* Present effect sizes (change in prevalence between populations or with some predictor) to give a sense of biological importance
* Provide confidence intervals to give an idea of certainty in the estimate

General advice

* Graph your data in a way that
* Honestly illustrates effects and confidence
* Include zero and one when graphing prevalence
*Show confidence intervals or confidence envelopes (logistic regression)
* Allows the raw data can be recovered for future (e.g., meta) analyses
* e.g., if you show prevalence as points on a graph, provide e.g., inple sizes
* Provide context: prevalence is only part of the story

