Presence of amplification hosts increases mortality of syntopic amphibians by ranaviral disease

Roberto Brenes¹, Matthew Gray¹, R. P. Wilkes², and Debra Miller¹,²
¹Center for Wildlife Health and ²College of Veterinary Medicine, University of Tennessee

Introduction
Declines in amphibian populations from disease outbreaks could be mediated by host susceptibility. Thus, changes in community composition could affect the likelihood of an outbreak. Additionally, the outcome of an outbreak might depend on which species in a community is exposed to the pathogen first.

Objective
Our objective was to determine if the outcome of a ranaviral disease outbreak in an amphibian community was dependent on community composition and which species was initially exposed to the virus.

Communities
We created two amphibian assemblages:
(1) wood frog (Lithobates sylvaticus), upland chorus (Pseudacris feriarum), and spotted salamander (Ambystoma maculatum) larvae, and
(2) Carolina gopher frog (L. capito), upland chorus frog (P. feriarum), and southern toad (Anaxyrus terrestris) larvae.

These species are known to have different levels of susceptibility (percent mortality; Hoverman et al. 2011, Brenes 2013).

High (>70%) = LISY, LICA
Moderate (30 – 70%) = PSFE, ANTE
Low (<30%) = AMMA

Study Site
Our experiment was conducted outdoors in 320-L mesocosms (n = 5/treatment) located at the University of Tennessee Joe Johnson Animal Research and Teaching Unit (JARTU).

Methods
Treatments consisted of one, all, or none of the species initially exposed to the virus. Initial exposure occurred under laboratory conditions in water baths (10⁵ PFU/mL) for 3 days prior to distributing larvae to the mesocosms.

Mesocosms were aged for 7 weeks to produce an aquatic environment emulating natural conditions. Larvae were monitored daily for survival and morbidity. Experiments lasted 8 weeks.

Results
Mortality from ranavirus depended on host susceptibility. Thus, changes in community composition could affect the likelihood of an outbreak. Additionally, the outcome of an outbreak might depend on which species in a community was initially exposed to the virus.

Appalachian Community
Exposed wood frog tadpoles caused an outbreak of ranaviral disease in unexposed chorus frogs (40% mortality) and amplified mortality of spotted salamander larvae 2X greater than when this species was directly exposed to the virus.

Coastal Plain Community
All species were able to cause outbreaks of ranaviral disease (>40% mortality) in co-inhabitant unexposed species.

Discussion
Our experiment demonstrated that amphibian community composition affected outcome of a ranavirus outbreak.

Community-wide Mortality
• Appalachian = 36%
• Coastal Plain = 64%

Appalachian Community
Wood frog tadpoles may be superspreaders:
• Spotted Salamanders = Amplified Mortality 3X
• Chorus Frog = 40% Mortality

Spotted salamander larvae:
• Wood Frog = 18% Mortality
• Chorus Frog = 24% Mortality

This species likely is insufficient to cause an outbreak.

Coastal Plain Community
High community-level mortality was observed in the Coastal Plains community regardless of which species was initially exposed to the virus.

Implications
The presence of highly susceptible species can create diseases hotspots and sources areas that will promote persistence and dispersion of the pathogen across the environment, possibly resulting in recurrent mortality events that could diminish amphibian populations and entire communities.

• Based on our results, amphibian communities composed of >3 moderately to highly susceptible species may be hotspots for ranavirus outbreaks.
• Natural resource practitioners can use results from susceptibility studies to identify communities to target ranavirus surveillance efforts.

Acknowledgments
We thank the UT Institute of Agriculture, Society of Wetlands Scientists, and the JARTU facility for support of this research. The following individuals assisted with this study: Dr. Melissa Kennedy, Roger Long, Gerry Middleten, Becky Hardman, Lauren Henderson, Bill Sutton, Chris Lituma, Jennifer Tucker, Sean Roon and Seth Brown.