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Abstract Infection with Rana grylio virus (RGV), an

iridovirus isolated in China in 1995, resulted in a high

mortality rate in frogs. The complete genome sequence of

RGV was determined and analyzed. The genomic DNA

was 105,791 bp long, with 106 open reading frames

(ORFs). Dot plot analysis showed that the gene order of

RGV shared colinearity with three completely sequenced

ranaviruses. A phylogenetic tree was constructed based on

concatenated sequences of iridovirus 26 core-gene-encoded

proteins, and the result showed high bootstrap support for

RGV being a member of the genus Ranavirus and that

iridoviruses of other genera also clustered closely. A

microRNA (miRNA) prediction revealed that RGV could

encode 18 mature miRNAs, many of which were located

near genes associated with virus replication. Thirty-three

repeated sequences were found in the RGV genome.

These results provide insight into the genetic nature of

RGV and are useful for laboratory diagnosis for vertebrate

iridoviruses.

Iridoviruses are nucleo-cytoplasmic large DNA viruses

(NCLDVs) and contain circularly permutated and termi-

nally redundant double-stranded genomes [1–3]. The

family Iridoviridae currently contains five genera,

including the genera Iridovirus, Chloriridovirus, Lympho-

cystivirus, Megalocytivirus and Ranavirus [4]. So far, the

entire genomes of 18 iridoviruses have been sequenced

completely (Table S1). Three of these are invertebrate-

infecting iridoviruses, and the other 15 are associated with

aquatic vertebrates. These include lymphocystis disease

virus 1 (LCDV-1) and lymphocystis disease virus-China

(LCDV-C), belonging to the genus Lymphocystivirus, and

infectious spleen and kidney necrosis virus (ISKNV), rock

bream iridovirus (RBIV), turbot reddish body iridovirus

(TRBIV), and other viruses, belonging to the genus Mega-

locytivirus that can infect fish species. Iridoviruses of the

genus Ranavirus, including frog virus 3 (FV3), soft-shelled

turtle iridovirus (STIV), epizootic hematopoietic necrosis

virus (EHNV), and other viruses can infect amphibians,

fish and reptiles [5–12].

Members of the genus Ranavirus have been recognized

as major pathogens of economically and ecologically

important cold-blooded vertebrates and have become seri-

ous problems in modern aquaculture, fish farming, and

wildlife conservation because of their epidemic morbidity

and ability to cause mortality [13]. Rana grylio virus

(RGV) is a pathogenic agent that results in greater than

90 % mortality in cultured pig frog (Rana grylio), which

was the first iridovirus isolated in China in 1995 [14, 15].

RGV has been recognized as a member of the family Iri-

doviridae and is closely related to FV3, based on previous

studies on morphogenesis, cellular interaction, antigenicity,

restriction fragment length polymorphism (RFLP) and

major capsid protein (MCP) sequence similarity [15–18].

To date, some genes of RGV have been identified and

characterized, such as 3b-hydroxysteroid dehydrogenase

(3b-HSD), deoxyuridine triphosphatase (dUTPase), an

envelope protein gene (53R), thymidine kinase (TK) and

a gene belonging to the ‘‘essential for respiration and
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viability’’ family (ERV1) [19–24]. We found that RGV

could induce apoptosis mediated by mitochondria [25].

RGV has the potential to be used as a viral vector for

expression of foreign genes in fish cells [26].

So far, the complete sequence of RGV has not been

available, and the relationship of RGV to other iridoviruses

has not been well understood. To aid in the understanding

of the molecular mechanisms of amphibian iridovirus

pathogenesis and its evolutionary status, the complete

sequence of RGV genomic DNA was determined and

analyzed.

RGV was isolated from tissues of diseased young pig

frogs with lethal syndrome in Hubei Province, China, in

1995, and Epithelioma papulosum cyprinid (EPC) cells

were used for virus propagation, grown in TC 199 medium

supplemented with 10 % fetal bovine serum (FBS) at

25 �C [14]. Virus propagation and purification were per-

formed as we described previously [17]. RGV genomic

DNA was prepared from purified virus particles. The

purified virus was incubated with TES (10 mM Tris, 1 mM

EDTA, 1 % SDS, pH 8.0, 100 lg/ml proteinase K) at

37 �C for 2 h. Then, the lysate was subjected to phenol-

chloroform extraction and ethanol precipitation as descri-

bed in our previous work [27].

Primers were designed based on complete DNA

sequence alignments of FV3, tiger frog virus (TFV) and

STIV, which are shown in Table S2. The amplified PCR

products were about 1500 bp in length, and the genes

studied previously were not amplified again. All of the

fragments were purified using a TIANgel Mini Purification

Kit (Tiangen Biotech), cloned into vector pMD18-T

(TaKaRa), and sequenced in both directions in an ABI PRISM

3700 automated DNA sequencer using M13 primers.

Genomic DNA assembly, structure analysis, and amino

acid sequence analysis were carried out using the DNA-

STAR software package (Lasergene, Madison, WI, USA).

The ORFs were predicted using Gene Finding in the virus

genome program at the website http://www.softberry.com

and NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/

gorf.html). Comparisons of homologous protein-encoding

regions of RGV with those of other viruses were conducted

using the BLASTP program at NCBI website (http://www.

ncbi.nlm.nih.gov). Transmembrane domains (TMs) were

predicted using TMHMM 2.0 (http://www.cbs.dtu.dk/

services/TMHMM-2.0) and the DAS-TM filter server

(http://mendel.imp.univie.ac.at/sat/DAS) [28]. Repetitive

DNA sequences were detected using REPuter and the

Tandem Repeats Finder [29, 30]. The complete genome

was scanned for miRNA coding regions using VMir [31],

and possible miRNA coding sequences were further ana-

lyzed using MiPred [32] and RNAfold server (http://rna.

tbi.univie.ac.at). DNA dot matrix plot analysis was per-

formed using DNAMAN version 6 (Lynnon Corp.).

Sequences of 26 core-gene-encoded proteins from 17

other completely sequenced iridoviruses were concatenated

as a continuous amino acid sequence with the same order

Fig. 1 Organization of the RGV genome. Predicted ORFs are

numbered from left to right and represented by arrows indicating

their approximate size, location and orientation based on the positions

of methionine start and stop codons. Black arrows represent the ORFs

with predicted functions, and the white ones represent those with

unknown function
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as RGV. LYCIV was not included, as its complete

sequence has not been annotated. The phylogenetic tree

was constructed using MrBayes 3.2 following multi-

sequence alignment using Clustal X 1.83 and format con-

version using Mega 4 [33]. A mixed amino acid model

analysis was applied with 100,000 generations and a

sampling frequency of 100.

ORFs were identified by the following criteria [9, 12,

34]: (1) they were at least 120 bp long, (2) they could be

detected by the two annotation methods, and (3) they were

not located within larger ORFs or have homologs to at least

two known virus ORFs.

The genome size, G?C content, and potential ORFs of

RGV were compared to those of other iridoviruses, and

these data are shown in Table S1. The RGV genome

(GenBank accession no. JQ654586) contained a double-

stranded DNA consisting of 105,791 bp, with a G?C

content of 55 %. One hundred and six putative ORFs could

be identified in the RGV genome by computer-assisted

analysis, the length of which ranged from 126 to 3885 bp.

ORFs that completely overlapped with others and had no

homology to those of other viruses were not annotated in

this work. The locations, sizes, predicted functions and

motifs of each putative ORF are listed in Table S3, together

with homologous proteins in other iridoviruses (FV3,

STIV, LCDV-C and ISKNV). Eighty-nine percent of the

ORFs have orthologous genes in FV3, 84 % in STIV, and

only 25 % in ISKNV.

A diagrammatic representation of the RGV genome is

shown in Fig. 1. Fifty-five ORFs were predicted to have

functions or functional domains (black arrows) related to

DNA replication, transcription, nucleotide metabolism,

protein synthesis and modification, viral structure, or host-

virus interactions (Table S3). Additionally, of the 22 par-

tially overlapping ORFs, one (72R) had a corresponding

ortholog only in the ATV genome, two (38R, 70L) had

orthologs only in the STIV genome, others had orthologs in

at least two viruses, and 57R was completely within 56L.

DNA dot plot analysis comparing the RGV genomic

DNA with itself and other iridovirus genomes revealed

that RGV shares high colinearity and sequence similarity

with two frog ranaviruses (FV3 and TFV) and one reptile

Fig. 2 DNA dot plot analysis of the RGV genome in comparison

with itself and other ranaviruses. The horizontal axis represents the

RGV genome. The vertical axes represent (a) the RGV genome,

(b) the FV3 genome, (c) the STIV genome, (d) the TFV genome,

(e) the ATV genome and (f) the EHNV genome. The complete

genomic sequences were aligned using DNAMAN version 6, and both

strands of the genome DNA sequences were aligned for the dot matrix

plot. Solid lines show the high level of sequence similarity. Black dots

show the results of comparisons of RGV with the positive-sense

strand of the virus indicated in the vertical axis, and red dots show

those with the corresponding plus-sense strand. Solid lines show the

high level of sequence similarity (color figure online)
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ranavirus (STIV) and that ATV and EHNV share partial

colinearity with RGV (Fig. 2). GIV, SGIV, LCDV-C,

ISKNV and CIV have little colinearity or sequence simi-

larity to RGV (data not shown).

Iridoviruses are believed to contain 26 core genes,

which have been identified in 12 iridovirus genomes by

Eaton et al. [34]. All of the core genes were found in the

RGV genome (the corresponding ORFs are marked with

asterisks in Table S3), and the homologous ORFs of other

sequenced iridoviruses are listed in Table S4. A phyloge-

netic tree was constructed based on the Bayesian inference

algorithm using the concatenated sequences of 26 core-

gene-encoded proteins, and the hosts and genera of the

viruses are indicated (Fig. 3). The tree shows that the

iridoviruses infecting vertebrates are clearly separated from

those infecting invertebrates. As was showed by dot plot

analysis, RGV is most closely related to STIV and clusters

with ranaviruses with high support, confirming that RGV is

a member of the genus Ranavirus. It was also observed that

ranaviruses of other subgroups clustered together, i.e.,

FV3-like viruses (RGV, STIV, FV3, TFV), ATV-like

viruses (ATV and EHNV), and GIV-like viruses (SGIV

and GIV), which is consistent with previous studies [2, 11,

35].

Ranaviruses have a wide range of hosts, including fish,

amphibians and reptiles, and they can be translocated

across large distances with ecological and economic con-

sequences [36]. There is evidence that the ancestral rana-

virus was a fish virus and that several recent host shifts

have taken place, with subsequent speciation of viruses in

their new hosts [11]. Indeed, there is also evidence that

ranaviruses switched hosts from tiger salamanders to

freshwater sport fish during bait trade [37]. Based on this

information and the phylogenetic relationships shown in

Fig. 3, we speculate that RGV was imported to China with

the commercial activities of pig frogs and that host

switching from amphibians to reptiles has likely occurred.

Thirteen precursor sequences encoding 18 mature

miRNA were identified (Table S5). All but one of these

miRNAs were located within or near ORFs with known

functions or predicted motifs associated with the genes that

play important roles in virus DNA replication, transcription

and assembly, such as 63R (DNA polymerase), 24R (D5

family NTPase), 9R (DNA-dependent RNA polymerase II

Fig. 3 Concatenated phylogenetic tree of iridoviruses. Twenty-six

core-gene-encoded proteins from 17 other completely sequenced

iridoviruses were rearranged as continuous amino acid sequences with

the same order as RGV. Multi-sequence alignment was carried out

using Clustal X 1.83, and the format of the output file was converted

to nex format using Mega 4. The phylogenetic tree was constructed

using MrBayes 3.2. The program uses a mixed amino acid model with

100,000 generations and a sampling frequency of 100. The host of

each virus and virus genus are listed at the right
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largest subunit), 65L (DNA-dependent RNA polymerase II

second-largest subunit), 98R (ICP46), and 53R (lipid

membrane protein). Indeed, most of the miRNAs were

identified in the opposite orientation to their associated

ORFs. Recently, a number of miRNAs have been identified

for DNA viruses such as herpesviruses, polyomaviruses,

ascoviruses and adenoviruses, which have evolved to

exploit RNA silencing for regulating the expression of their

own genes, host genes, or both [38–40]. For iridoviruses, a

computational method has been used to predict IIV-9-

encoded miRNAs, and deep-sequencing technology has

been applied to identify miRNAs encoded by SGIV [35,

41]. Thus, it is possible that the potential miRNAs encoded

by RGV regulate the expression of their own genes.

However, how these miRNAs function needs further

investigation.

Thirty-three repeated sequences were found in the RGV

genome. The size of the repeated sequences ranged from 2

to 222 nt, and the copy numbers from 2 to 41 (Table S6).

Nineteen repeat units were located within the putative

ORFs: 2L, 39L, 40R, 43R, 47L, 50L, 81L, 85L, 93L, 94L

and 96R contained one; 21R, 35R and 45L contained two

or more; and the rest were located in the noncoding

regions. Interestingly, a unique microsatellite consisting of

41 tandemly repeated CA dinucleotides (also known as

simple sequence repeat, SSR) was located in the noncoding

region between ORFs 79L and 80L, and 34 such repeats

were also found in FV3 and STIV. Previous studies

revealed that repeated sequences are common in iridovi-

ruses, poxviruses, herpesvirus, baculoviruses, adenoviruses

and retroviruses and may serve as regulatory elements

involved in transcription, gene regulation and protein

function [42, 43], suggesting that the repeat sequences in

the RGV genome could play a regulatory role in viral

replication. Furthermore, microsatellites such as CA and

GCAGGA, as mutational hotspots, could produce genetic

polymorphisms that are useful for studies of quantitative

genetic variation and evolutionary adaptation.

In conclusion, RGV was isolated in Hubei Province,

China, in 1995 [14]. The complete genome of RGV was

sequenced and analyzed. The RGV genome contains all of

the 26 core iridovirus genes. A Bayesian phylogenetic tree

showed that RGV is closely related to STIV and FV3,

which belong to the genus Ranavirus of the family Irido-

viridae. Further analysis of the host relationships revealed

that host shifting probably took place. Other characteristics

of NCLDV, such as virus-encoded miRNAs and repeated

sequences were also found in the RGV genome, and these

might play an important regulatory role in gene transcrip-

tion, protein expression or virus replication. The informa-

tion we have provided may be useful for further studies on

the mechanisms of amphibian iridovirus pathogenesis and

the evolutionary relationships of the iridoviruses.
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