Amphibian ranavirus transmission and persistence

With an emphasis on ecological relevance

Jesse Brunner
Amphibian ranaviruses

1) Transmission
 - Routes of transmission — *How* does ranavirus get around?
 - Function form of transmission — How does transmission scale with density?

2) Persistence
 - Environmental persistence
 - Persistent infections
 - Biotic reservoirs

3) Future directions
Essentially every dose-response study with ranavirus

- **BIV** Cullen et al. 1995, Cullen & Owens 2002
- **ATV** Brunner et al. 2005
- **FV3** Pearman et al. 2004, Hoverman et al. 2010, Warne et al. 2011
- **RUK** Cunningham et al. 2007
- **LMBV** Grant et al. 2003

Small particles (filtered water) and chunky bits (filtrate) are both very infectious (Brunner et al. 2007)
Harp & Petranka (2006) added water (~2L) and pond substrate (~0.3kg) from ponds undergoing die-offs to kiddie pools with wood frog tadpoles

Routes of transmission: via water

Table 1. Results of polymerase chain reaction assays for ranavirus detection in surviving wood frog tadpoles from Experiment 3.

<table>
<thead>
<tr>
<th>Experimental treatment</th>
<th>Sediment</th>
<th>Water</th>
<th>No. of samples (% positive)</th>
<th>Pools (% positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>Unexposed</td>
<td></td>
<td>11 (45%)</td>
<td>83%</td>
</tr>
<tr>
<td>Exposed</td>
<td>Exposed</td>
<td></td>
<td>9 (44%)</td>
<td>67%</td>
</tr>
<tr>
<td>Unexposed</td>
<td>Unexposed</td>
<td></td>
<td>6 (0%)</td>
<td>0%</td>
</tr>
<tr>
<td>Unexposed</td>
<td>Exposed</td>
<td></td>
<td>6 (0%)</td>
<td>0%</td>
</tr>
</tbody>
</table>

Treatments reflect all combinations of exposed or unexposed sediment and water. Exposed samples were collected during an active ranavirus outbreak and unexposed samples from a pond without ranavirus. Data represent the number of samples analyzed, the percentage of samples that were positive (in parentheses), and the percentage of pools (n = 6 per treatment) that were positive for ranavirus. Each sample reflects a pooled analysis of five tadpoles, and from one to three samples (5–15 tadpoles) were analyzed per pool.
Routes of transmission: via water

Are infectious levels of virus in water reached in nature?

- Measured ATV concentration in exudate, scrapes, and water (~500mL) a week after IP injection
- In a well-mixed, 10m diameter pond 1m deep, would need 157,000 sick larvae shedding to reach 10^2 pfu/ml!

Graphs:

- **Proportion Infected** vs. **Log$_{10}$(ATV) / ml**.
- **Log$_{10}$(ATV) / ml** vs. **Proportion Infected**.

Graph Data:

- Brunner et al. 2005
- Brunner, unpublished data
Routes of transmission: *direct contact*

- **ATV**: one second, belly-to-belly contact caused infection in 18/21 *Ambystoma tigrinum* larvae (Brunner et al. 2007)

- **BIV**: 5/8 *Limnodynastes terraereginae* metamorphs co-housed with IP-injected frogs were infected (Cullen et al. 1995)

*but not *L. caerulea* or *Cophixalus ornatus* adults (Cullen & Owen 2002)
Routes of transmission: *direct contact*

- Infected *A. tigrinum* larvae become more infectious through time.
- Carcasses are very infectious.

Brunner et al. 2007
Routes of transmission: consumption

- Bits & pieces (nipping, biting)
 - Fed tail clips form ATV-exposed larvae (Brunner et al. 2005)
 - Orally inoculated 3 anuran spp with FV3 (Hoverman et al. 2010)

- Cannibalism

- Necrophagy/scavenging
 - Tadpoles with access to FV3-infected carcasses get sick and die faster (Harp & Petranka 2006, Pearman et al. 2004)
Routes of transmission: *vertical*

- 60% of wood frog tadpoles raised from eggs in lab “weakly positive” for FV3-like virus (Greer et al. 2005)

- FV3-contaminated wood frog eggs: 4/5 field-collected & 1/3 laid in captivity (Duffus et al. 2008)
 - Only 1/59 tadpoles tested from these four clutches was positive by PCR

Contamination or true vertical transmission?

Vertical transmission is rare

unimportant for epidemic dynamics

potentially important for year-to-year persistence
The functional form of the transmission term

\[\text{contacts} \times \left(\frac{I}{N} \right) \times P(\text{inf} \mid \text{contact}) \times S \]

Will I, a poor susceptible tadpole, become infected?
The functional form of the transmission term

\[\text{contacts} \times \left(\frac{I}{N} \right) \times P(\text{inf} \mid \text{contact}) \times S \]

- Contact rate increases with density \(\beta IS \)
- Contact rate is constant (density-independent) \(\beta \left(\frac{I}{N} \right) S \)

- Disease fades out before host goes extinct
- Culling is an effective control measure
- Transmission continues as host goes extinct
- Culling will not control disease
Add infected and susceptible animals to pools
Wait 24h and see how many were infected
Fit transmission terms to data
Form of the transmission term

<table>
<thead>
<tr>
<th>Transmission model</th>
<th>Central pile</th>
<th>Dispersed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>ΔAICc</td>
</tr>
<tr>
<td>Constant βS</td>
<td>1</td>
<td>17.3</td>
</tr>
<tr>
<td>Density βIS</td>
<td>1</td>
<td>35.8</td>
</tr>
<tr>
<td>Frequency $\beta (I/N)S$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Power $\beta I^q S$</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

Brunner et al. *In prep.*, see also Greer et al. 2008
Transmission summary

Routes of transmission

1) Most transmission occurs by “close contact”

2) Build up of virus in the environment, particularly substrate, may increase transmission

3) Cannibalism & Necrophagy/Scavenging are probably very important

Form of transmission

1) Frequency-dependent (over most host densities)

2) Dose-dependent transmission from the environment is like density-dependent transmission

3) Transmission via scavenging is an added term (keep track of carcasses) and should lead to accelerating epidemics
EHNV can survive ≥ 97d in distilled water & ≥113 d at 15°C in dried culture media (Langdon 1989, reviewed in Whittington et al. 2010)

Persistence in the environment

Water

- Pond water
- Autoclaved water

Sediment

Sediment collected during an epidemic infected wood frog tadpoles in 9/12 pools (Harp & Petranka 2006)

But… when ATV-spiked pond sediment was dried & rehydrated it was not infectious to salamander larvae (Brunner et al. 2007)

Brunner, unpublished data

Log₁₀ (ATV) / ml

Days after water spiked

0 5 10 15

0 1 2 3 4
Persistence in frozen carcasses

EHNV can persist in frozen fish for ≥ 2 years (Langdon 1989)

ATV has been detected in frozen carcasses (D. Schock, pers. comm.)
Persistence in carrier state

- *Notophthalmus viridescens* developed persistent (≥81 days) infections with T6-T20 (FV3-like) (Clark et al. 1969)
- FV3 persists and replicates in peritoneal leukocytes for ≥12 days in *Xenopus laevis* (Robert et al. 2007)
- *Ambystoma tigrinum* larvae maintained persistent, transmissible ATV infections for ≥5 months (Brunner et al. 2004)
- Evidence of carrier state in EHNV infections is mixed, but likely in redfin perch (reviewed in Whittington et al. 2010)
Persistence in alternate hosts / biotic reservoirs

No shortage of potential hosts

- ATV infects a range of salamanders (Jancovich et al. 2001) as well as frogs (Schock et al. 2008)
- FV3 infects anurans and caudates, (Duffus et al. 2008, Schock et al. 2008), and apparently fish (Mao et al. 1999) and chelonians, too (Johnson et al. 2008)
- BIV infect frogs and fish (Moody & Owens 1994)

Interspecific transmission not assured or well understood

E.g., FV3 and ATV viruses co-circulating in wood frogs and tiger salamanders, respectively (Schock et al. 2008)
Persistence summary

1) Need to think about persistence at different time scales, with varying relevance for:
 - transmission within epidemics
 - persistence between epidemics (re-current epidemics)
 - movement between populations or regions

2) Multiple means of persistence between epidemics:
 - reservoirs
 - Carriers
 - frozen carcasses

3) Environmental persistence of ranavirus least well documented or understood

Future directions / research needs

1) Establish the *ecologically relevant* environmental limits of ranavirus
 - In pond water (with algae, bacteria, etc.) & substrates
 - On potential fomites & in or on potential carriers (e.g., birds)

2) Study persistent/chronic infections
 - Commonness, duration, and cause(s) of

3) Determine the relative importance of different routes of transmission
 - From environmental sources, carcasses, and live hosts
 - Between alternate host species in the community