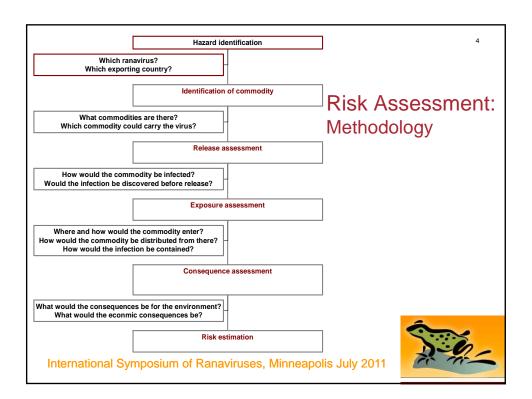
The Ranavirus Project

Assessing the risk of introducing **Exotic Ranaviruses into Europe**

Britt Bang Jensen Norwegian Veterinary Institute

International Symposium of Ranaviruses, Minneapolis July 2011

Outline of the presentation:


- Objective of the study
 - The RANA-project
- Risk assessment
 - Methodology
 - Hazard Identification
 - Pathway
 - Calculations
 - Results
- Discussion & Perspectives
- Acknowledgements

The RANA-project

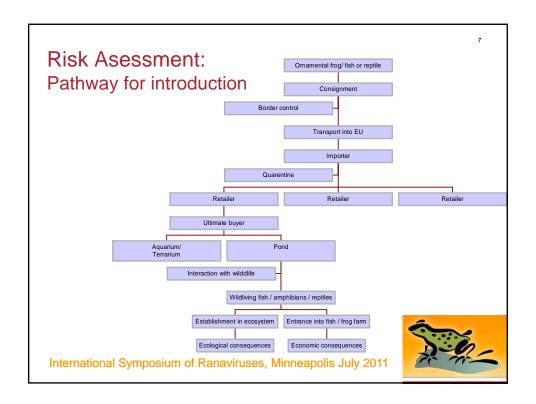
- Risk Assesment of New and emerging systemic iridoviral diseases for European fish and Aquatic ecosystems
- EU-funded under 6th framework programme
- Six partners (DK, UK, FI, GE, IT and CZ)
- Inititiated June 2005
 –finished in February 2009

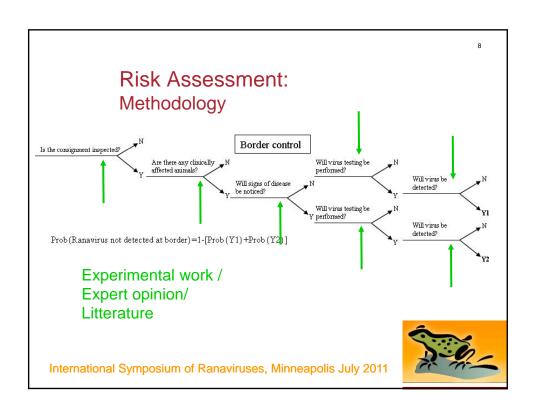
300

Hazard Identification Criteria:

- Must be present in the commodity to be imported.
- Must be present in the exporting country.
- Should not be present in the importing country
 - if present, the pathogenic agent should be associated with a notifiable disease, or should be subject to control or eradication measures.
- Must be an OIE notifiable disease, or be identified by some other additional criteria by the importing country.
- Must produce adverse consequences in the importing country.

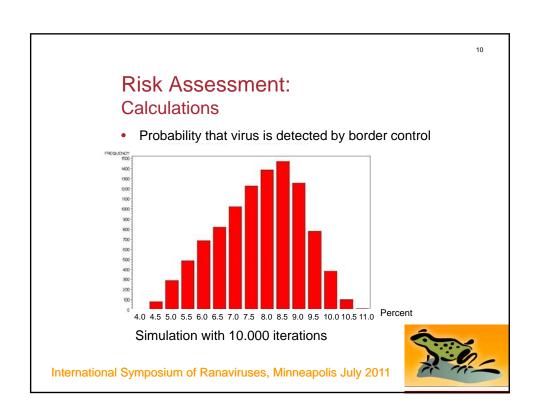
International Symposium of Ranaviruses, Minneapolis July 2011


Hazard Identification


-Objective of model

The possible introduction and spread of an exotic amphibian ranavirus (RTRV) from Asia into the EU

Next question: Route of entry?



Risk Assessment: Expert opinion

Experts asked for their opinion, using a triangular distribution of min-most likely-max

Steps in Border control	How likely is it? (%)		
	Min	Most likely value	Max
Inspection performed	85%	95%	98%
Virus testing performed given inspection made	5%	10%	12%
Rana virus detected if test performed (Se)	85%	95%	100%

300

Risk Assessment: Results

	Probability	Variation	Assessment
Ranavirus in the consignment			
is not detected:	87.3-99.9%	72.4-100%	High
Wildlife (amphibians/fish) gets			
infected with ranavirus:	2.4-45.4%	0.4-71.9%	Medium
Fish farm gets infected with			
ranavirus:	0.1-19.2%	0-28.6%	Low

Assumptions:

- Considering one infected consignment (100% prevalence)
- · Imported animals are destined for outdoor ponds

International Symposium of Ranaviruses, Minneapolis July 2011

Discussion and Perspectives

- Border control is inefficient –but is that a problem?
- Major data gaps:
 - prevalence of ranaviruses
 - carrierstatus
 - survival of virus in animals
 - transmission of virus between species, etc....
- Factors determining host susceptibility to ranaviruses should be clarified
- Epidemiologic investigations should be carried out when new outbreaks are detected
- Proper risk analyses should be carried out when amending legislation

Acknowledgements

- Ellen Ariel –James Cook university
- Guiseppe Bovo, Federica Gobbo –ISZVE
- Tomas Vesely, Katerina Cinkove -VRI
- Sven Bergmann, Heike Schuetze, Stephanie Ohlemeyer –FLI
- Barry Hill, Amanda Bayley –Cefas
- Hannele Tapiovaara, Riikka Holopainen Evira
- Anette Kjær Ersbøl –NIPH
- Helga Høgåsen –NVI

Ranavirus symposium organizers!

