Overview

- Introduction/Background
- Diagnosis of Ranavirus
- Prevalence of Ranavirus in eastern box turtles
- Pathogenesis/Transmission
- Therapeutics
Introduction/Background

>30 cases identified since 2003

<table>
<thead>
<tr>
<th>State</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>Gopher tortoise</td>
<td>Westhouse et al.</td>
</tr>
<tr>
<td></td>
<td>Florida Box turtle</td>
<td>Johnson et al.</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Eastern box turtle</td>
<td>DeVoe et al., Allender et al.</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Eastern box turtle</td>
<td>Allender et al.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Eastern box turtle</td>
<td>Johnson et al.</td>
</tr>
<tr>
<td></td>
<td>Snapping turtle</td>
<td>USGS</td>
</tr>
<tr>
<td>Maryland</td>
<td>Eastern box turtle</td>
<td>USGS, Mao?</td>
</tr>
<tr>
<td></td>
<td>Tortoise</td>
<td>Mao?</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>Painted turtle</td>
<td>USGS</td>
</tr>
<tr>
<td>Kentucky</td>
<td>Eastern box turtle</td>
<td>Ruder et al.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Barnsese Star tortoise</td>
<td>Johnson et al.</td>
</tr>
<tr>
<td>New York</td>
<td>Eastern Box turtle</td>
<td>Johnson et al.</td>
</tr>
<tr>
<td>Texas</td>
<td>Eastern box turtle</td>
<td>Johnson et al.</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Eastern box turtle</td>
<td>Allender</td>
</tr>
<tr>
<td>Virginia</td>
<td>Eastern box turtle</td>
<td>Johnson, pers. comm.</td>
</tr>
<tr>
<td>Indiana</td>
<td>Eastern box turtle</td>
<td>Johnson, pers. comm.</td>
</tr>
</tbody>
</table>
Geographic Range

Ranavirus

- High mortality rate in diagnosed chelonia
 - All clinical cases at UT died
 - >80% in transmission study in sliders
 - Prevalence rate reflects mortality rate

- Potentially under-diagnosed
 - Illness causes turtles to thermoregulate, in high traffic/suburban areas may include on pavement, increasing chance of trauma
 - 61 of 445 animals were diagnosed with a primary infectious disease that were presented with HBC trauma and no evidence of upper respiratory signs
 - Include all causes of infectious disease
Objective 2
Diagnosis

Clinical Signs

- Present with sudden onset of severe illness or sudden death with no signs
- Clinical signs - non-specific, similar to those of mycoplasma and herpesvirus infections
- Death within hours to days of observation of clinical signs
- Variable response to supportive care
Ante-mortem Diagnostic Tests

- Complete Blood Count
 - +/- anemia
 - Intracytoplasmic inclusions

- PCR
 - Specific
 - Whole blood or oral/cloacal swabs

- ELISA
 - plasma
Polymerase Chain Reaction

- Conventional PCR has been developed and utilized in chelonians
- Real-time PCR
 - More sensitive than conventional
 - Conventional PCR – 529,000 viral copies
 - SYBR Green qPCR – 5290 viral copies
 - TaqMan qPCR – 529 viral copies
 - Detect subclinical disease states
 - Quantify virus
Indirect ELISA

- Substrate
- Alkaline phosphatase
- Streptavidin
- Secondary biotinylated antibody (mouse anti-desert tortoise IgY Ab)
- Primary Antibody (tortoise plasma)
- Coating antigen (iridovirus)
- Color change

Post-mortem Diagnostics

- Necropsy
- Virus Isolation
- PCR
- Electron microscopy
Virus Isolation
Objective 3

Prevalence
Prevalence

- No data regarding prevalence in natural populations (amphibian or reptile) in the absence of an epidemic
- Temporal and spatial patterns outside these epidemics are unclear
- Tiger salamanders
 - Screened over 4 years with PCR
 - Commonly infected in absence of clinical signs
 - Contrasts experimental data

Rehabilitation Clinics

- Populations
 - Individuals presented to wildlife clinics in the southeastern US
 - University of Tennessee (3%; 0.2-19.6%)
 - North Carolina State University (3%; 0.2-16.2%)
 - Virginia Wildlife Health Center (0%; 0-11.1%)
 - Biased population toward sick and injured animals
 - Free-ranging population in east Tennessee
 - Unbiased population in same geographic region
Free-ranging survey

- Blanding’s (58) and painted turtles (47) in Illinois
 - 0% PCR prevalence
- Gopher tortoises
 - Evaluated plasma for presence of antibodies from 5 states
 - 932 animals
 - 1.6% positive rate
 - 0-3.1% per state

Objective 4
Pathogenesis/Transmission
Transmission

- Unknown in chelonians
 - Transmission study in red-eared sliders failed to produce clinical signs in orally-inoculated turtles
 - Koch’s postulates fulfilled in injected turtles

Transmission

- Role of temperature well-established in development of clinical signs from iridoviruses
 - Epizootic Hematopoietic Necrosis virus in red perch
 - 11 day incubation at 19-21°C
 - No disease below 12°C
 - EHN in white sturgeon
 - Higher cumulative mortality and longer disease course at lower temperatures
 - Higher daily mortality and secondary infections at higher temperatures
 - Tiger salamanders with ATV
 - Survived infection at 26°C
 - All or most died at 18°C or 10°C
Materials and Methods

- Experimental trial
 - 3 treatment groups of 5 animals each
 - Each group will be exposed to one of 3 temperatures (16, 22, 31)
 - One uninfected control in each group
 - Turtles inoculated through IM injection
 - Daily observation of clinical signs
 - Oral/cloacal swab and blood collected twice weekly
 - Euthanized when clinical signs become severe

Objective 5
Therapeutics
Treatment

• Acyclovir
 • Anti-viral drug closely related to DNA
 • Often used in treating herpesvirus infections
 • Needs to be phosphorylated by a virus thymidine kinase enzyme
 • Inserted into DNA strand during replication and stops it
 • Iridovirus TK gene is more similar to herpesvirus TK gene than that of other large DNA viruses
 • In vitro studies show that at higher dosages, ranaviral activity is slightly inhibited

References

Questions?