

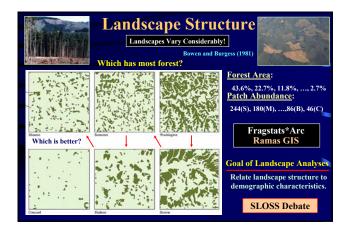
Goal of the Lecture

To familiarize students with spatial aspects of wildlife ecology.

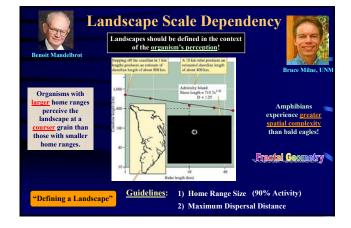
Reading Assignments:

1) Chapter 24: pp. 638-645:

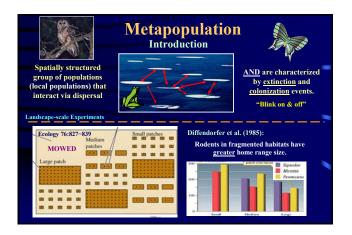
"Conservation of Genetic Diversity" Four processes that influence patterns of genetic diversity
 Bottleneck population
 Genetic diversity & population viability

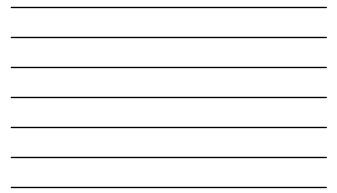

Lecture Structure

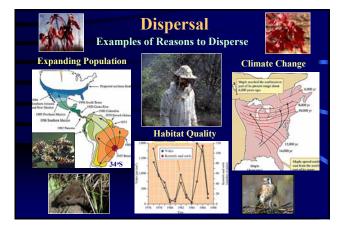
- I. Landscape Ecology Terms Juxtaposition, Geometric Complexity, Permeability/Viscosity
- II. Metapopulations, Dispersal, and Habitat Patch Size Blinking "on" and "off" in space.
- III. Landscape Ecology Study

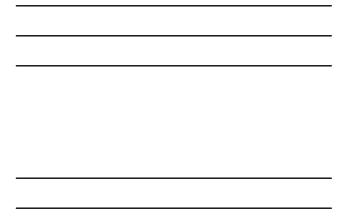

Agricultural Landscapes & Amphibians

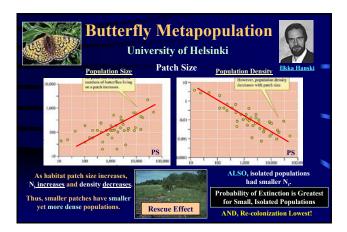
Landscape Ecology						
The s	The study of landscape structure and spatially structured population processes.					
Landscape: Heterogeneous area consisting of <u>habitat</u> (i.e., where populations reside) and <u>non-habitat</u> (areas inhospitable for survival and reproduction, IPM).						
	Organism Dependent:	Habitat Patch	Inter-patch Matrix			
	Salamander vs. Coyote	Wetland	Oak Savannah, Agriculture			
Landscape S	Structure:		•			
1) Spat	ial Position of Habitat Patc	hes:				
2) Geor	Distance between habitat patches, which is affected by patch abundance & size. 2) Geometric Complexity of Interpatch Matrix:					
	Edge density (# edges/km),	Edge Permeability, II	PM Permeability. 📃 🔪			
3) Others: Patch Shape, Patch Quality (i.e., habitat quality: respective birth/death rates)						
Population	Processes: Populations that	t are spatially structu	red must interact periodically!			
	Successful Dispersal F					

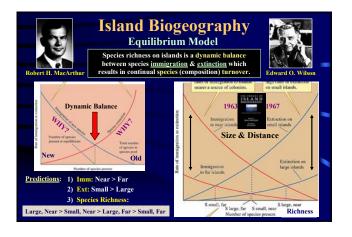


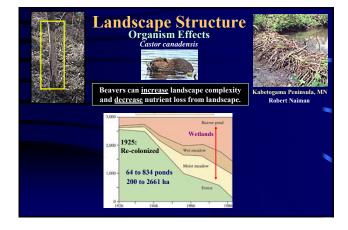


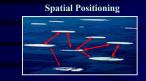











	Landscap Anthropogen			
1) Decrease total habitat	3) Increase inter-pate		crease landscape pern	neability
2) Decrease patch size	4) Increase landscape			_
Decreasing forest co	Caliz Township	landscape.		
1000		2 A	2 to	•
3.000		Gree	en County, Wisconsin	
(a) 100 - 93.5%	_			
	27%	9%	3.4%	
101	1882	1902	1950	

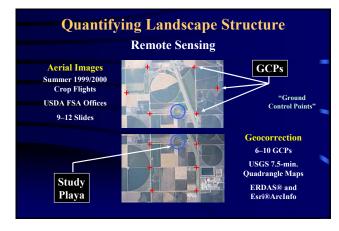
2 Primary Objectives

Components of Landscape Structure

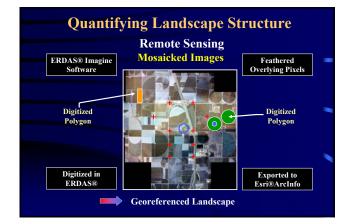
Demographic Variables Mean Daily Abundance Community Composition NSF, BTS, GPT, PSF

2,830-ha plot, 3-km radius

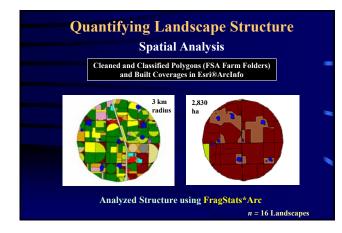
Methods: Terrestrial Capture

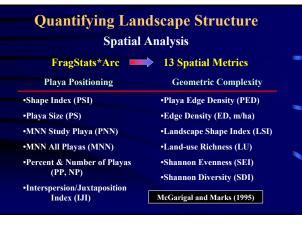


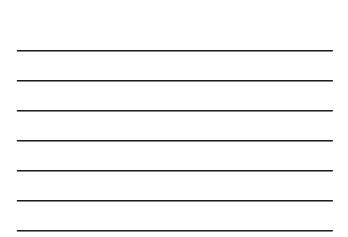
•Partially Enclosed (25%) •60-cm Drift Fence •19-L Pitfall Traps

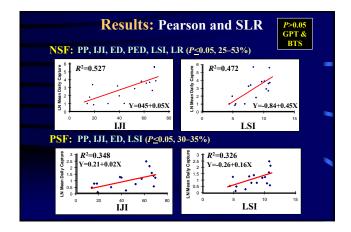

•Checked Alternate Days

•16 May-17 October 1999 •19 April-18 August 2000 •Enumerated by Species *Mean Daily Capture*









Summary of Results

Canonical Correspondence Analysis:

Landscape structure influenced the composition of the amphibian assemblage at playa wetlands.

GPT and BTS were negatively associated with spadefoots (NSF, PSF).

Pearson and SLR:

Spadefoots were positively associated with metrics representing optimal spatial positioning of playas and geometric complexity of the landscape.

GPT and BTS abundance was not influenced univariately by landscape structure.

Discussion

Spadefoots Influenced by Structure (With and Crist 1995, Wiens et al. 1997, McIntyre 2000)

Small Body Size

'+' Correlated w/ Vagility
Inter-patch Matrix Viscosity
Boundary Permeability

Geometrically Complex Landscapes Unable to Penetrate Increased Nestedness/Abundance (Can. J. Zool. 77:1288–1299) Optimally Juxtaposed Wetlands P[Dispersal] † Metapopulation Theory (Am. Nat. 148:226–236)