Goal of the Lecture

To familiarize students with statistical concepts, definitions, and measures necessary to analyze habitat data.

Reading Assignments:

Lecture Structure

I. Definitions & Concepts

II. Statistical Measures
What is Statistics?

The subdiscipline of mathematics that uses mathematical theorems, principles, and techniques to analyze data.

Fundamental Concept:

- Is statistics necessary for a census?
- Sample vs. Census
- Collection of all individuals or possible measurements
- Subset of all individuals or possible measurements
- “Field of Statistics”
- “Point Estimates”

Statistical Definitions

Response Variable: The characteristic of interest measured. E.g., air temperature, g of seed, tree density

Experimental Unit: The natural or artificial entity that is measured. E.g., animal, plot (area), water column

Population: The entire collection of experimental units. E.g., all animals, all potential plots (1-1m²)

Sample: The subset of experimental units which are actually measured. E.g., animals measured, plots measured

Parameter: The unknown true measure of central tendency, variability, or relation. E.g., true mean weight (all animals) µ

Statistic: An estimate of a population parameter calculated from data. E.g., mean weight of measured animals µ

Probability: The chance of occurring. Provides the inferential framework (confidence!) for determining if differences exist in a response variable between ≥ 2 populations

Statistical Notation

For a response variable, x, we denote a sample from the population as:

\[x_1, x_2, x_3, \ldots, x_n \]

where: \(x_i \) = measurement on EU #1, \(x_i \) = measurement on EU #2,..., \(x_n \) = measurement on the last EU

and, \(n \) = sample size

For more general notation, we let \(i \) = EU #, thus to denote the sum of all measurements in a sample:

\[\sum_{i=1}^{n} x_i \]

Suppose, we have the following data set:

<table>
<thead>
<tr>
<th>x</th>
<th>f</th>
<th>|x|</th>
</tr>
</thead>
</table>
| 1 | 4 | 4
| 2 | 2 | 2
| 3 | 1 | 3

\[\sum_{i=1}^{n} x_i = 78 + 74 + 82 + 97 + 95 = 426 \]
Measures of Central Tendency

Where is the center of our data?

Sample Median: The number where exactly 50% of the data lie above and below it.

Odd n:

Even n: (take average)

Sample Mean: The number such that the sum of deviations from each measurement to it \(\bar{x} \) = 0.

Odd n:

Even n:

Computationally:

The Sample Median is less affected by Outliers (compared to the sample mean)

Measures of Proportion

What proportion of the population is ________?

The true population proportion, \(P \), is estimated by calculating relative frequency.

Relative Frequency = Relative Frequency

Total Number of Individuals in Sample

<table>
<thead>
<tr>
<th>Value of x</th>
<th>Freq</th>
<th>(P) Hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUV</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>SUBADULTS</td>
<td>10</td>
<td>0.333</td>
</tr>
<tr>
<td>ADULT_F</td>
<td>5</td>
<td>0.185</td>
</tr>
<tr>
<td>ADULT_M</td>
<td>3</td>
<td>0.111</td>
</tr>
</tbody>
</table>

Measures of Variability

Population Mean

True Natural Variation of Individuals in a Population

Sample Standard Deviation, \(S \): Natural Variation of Measurements in Sample

How should we measure variation?

How about using deviations? If deviations are small, our measurements are clustered (precise)?

Now, a reasonable estimate of variation might be “Average Deviations” from the Mean:

But, if we square our deviations (all will be positive), the numerator will not equal zero. “Average Squared Deviations”

Which is not helpful.

Use \(S \) to estimate \(\sigma \)
Measures of Variability

Population Mean

Sample Variance, S^2: Average Squared Deviations from the Sample Mean

Sample Standard Deviation, S: Average Deviation from the Sample Mean

Sample Range: $\text{MAX} - \text{MIN}$

Calculating Variance & Standard Deviation:

$$S^2 = \frac{\sum (X_i - \bar{X})^2}{n-1}$$

$$S = \sqrt{S^2}$$

Empirical Guidelines for Symmetric Distributions

If your data (thus the population) follow approximately a symmetric distribution (i.e., a bell-shaped curve), then:

- Approximately, 68% of your data should lie within 1 SD of mean
- Approximately, 95% of your data should lie within 2 SD of mean
- Approximately, 99% of your data should lie within 3 SD of mean

Measures of Variability

Population Proportion

Calculating the sample standard deviation for relative frequencies (i.e., proportions) is much easier.

$$S = \sqrt{\bar{q}_i \bar{p}_i \frac{1}{n}}$$

where, $\bar{q}_i = 1 - \bar{p}_i$

Demographic Data:
Measure of Relation

Correlation

Goal: Measure the linear relation between 2 response variables, X and Y.

Accomplished by: Calculating the correlation coefficient, \(r \).

Interpreting \(r \):

- Strong Positive: \(r > 0.5 \)
- Strong Negative: \(r < -0.5 \)
- Weak Positive: \(0.1 < r < 0.5 \)
- Weak Negative: \(-0.5 < r < -0.1 \)
- No Relation: \(-0.1 < r < 0.1 \)

Are body fat and clutch size \(+\) related?

Measure of Relation

Correlation Coefficient

\[
\hat{r} = \frac{SS_{xy}}{\sqrt{SS_x SS_y}} = \frac{SS_{xy}}{SS_x SS_y} \sqrt{\frac{SS_y - \sum (y_i - \bar{y})^2}{SS_x - \sum (x_i - \bar{x})^2}}
\]

Example:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X*Y</th>
<th>X*X</th>
<th>Y*Y</th>
<th>X*Xbar</th>
<th>Y*Ybar</th>
<th>X*Ybar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-8</td>
<td>9</td>
<td>16</td>
<td>9</td>
<td>16</td>
<td>-8</td>
</tr>
</tbody>
</table>

\[
\hat{r} = \frac{11}{\sqrt{14}\sqrt{10}} = 0.93
\]