Global Positioning System
Theory and Practice

Matthew J. Gray
College of Agricultural Sciences and Natural Resources
University of Tennessee-Knoxville

What is GPS?
Worldwide Space-based Navigation System

Funded, Controlled, and Maintained by
U.S. Department of Defense
Operated by U.S. Air Force

Original Objective
• Determine position of all military forces continuously worldwide.
• Accurately deploy nuclear missiles from subs.

Components of GPS

1. Space segment
 - Satellites
 - Ground control segment
 - User equipment

2. Control segment
 - Monitor satellite health
 - Time synchronization
 - Ephemeris updates
Components of GPS
(1: Space Segment)

- 28 satellites in 6 nearly-circular orbits (4-5).
- Orbital paths are 20,200 km MSL with a 55° angle of inclination and 60° horizontal separation (360).
- Global coverage 4-10 observable satellites simultaneously w/ 15° elevational mask.

Satellites (Space Vehicles [SVs])

NAVSTAR

- Block II Class (Block IIA, Block IIR, Block IIF)
- Weigh ca. 2000 kg, launched from KSC using Delta II rockets or placed in orbit using the Space Shuttle, life = 7.5 years, and cost $50 million each.
- Each contains 2 rubidium and 2 cesium atomic clocks or hydrogen masers (i.e., use atoms as their metronome).

Components of GPS
(2: Control Segment)

- Master Control Station
- 5 Monitor Stations
- 3 Ground-based Uplink Antennas

Monitor
Errors in
Satellite
Position & Clocks

Transmit Corrections
Components of GPS
(3: User)

GPS Receivers
Computes
3-Dimensional Location
3-4 Satellites

Primary Uses of GPS
(1: Navigation)

Primary Uses of GPS
(2: Surveying/Mapping)
Primary Uses of GPS
(2: GIS Mapping: Natural Resources)

Five Steps of GPS
(3-Dimensional Location)

1. Geometric positioning (trilateration) of satellites
2. Measure satellite-specific distance
3. Correct clock errors
4. Correct ephemeris (orbit) errors
5. Correct atmospheric errors

Trilateration: Satellites 1 and 2

Located within the Intersection of 2 Spheres

18,000 km
(18,000 km)
(19,000 km)
Trilateration: Satellites 1-4

2 Possible Locations at Intersection of 3 spheres

(18,000 km) (19,000 km)
(20,000 km) (21,000 km)

Usually can reject 1 of 2 locations; however, 4th satellite needed for time correction.

Geometric Configuration of Satellites
(Geometric Dilution of Precision [GDOP])

1 per quadrant, >15° elevation

Position Dilution of Precision (PDOP)
 - Horizontal Dilution of Precision (HDOP)
 - Vertical Dilution of Precision (VDOP)

PDOP < 6

SatView Demonstration: DOP
(http://www.trimble.com/planningsoftware.html)

Sample when satellites are positioned optimally!!
Their locations are known.

Free Trimble Software

02/25/99: Lubbock, TX
1400-1800 hrs: CDT
1400-2300 hrs: CDT
2. Measuring Distance to Satellites

Distance = Velocity \times Time

Distance must be accurate

V = c or 300,000 km/sec

\(t = \) “Micro-seconds” of travel (0.06)

Difficulty in measuring time

Synchronized Radio Frequencies

- Code-Phase
- Carrier-Phase

“On” and “Off” Pulses 1000x Faster

Psuedo-random Code

12:00

Receiver

Satellite

PRC

Satellite Unique

3. Measuring Accurate Time

(Atomic vs. Quartz Clocks)

Accuracy: 10^{-10} seconds
(10 nanoseconds)

$100,000 each (4/satellite)

Accuracy: 10^{-3} seconds
(300 km error)

$50 each (1/receiver)

Satellite and Receiver Codes Must be Generated Simultaneously

Receiver Calculates Time Correction and Calibrates Itself to Universal Time and Perfect Synchrony

4. Determining Satellite Position

(Ephemeris: Satellite Orbit)

High Altitude Orbits

- Extremely Stable
- No Atmospheric Drag
- Maximize Coverage of Earth
- Enhance Satellite Survivability

Orbit Errors

- Gravitational Pull (Moon & Sun)
- Pressure from Solar Radiation

Monitored by Ground Control & Errors Transmitted
Determining Satellite Position (Correcting Ephemeris Errors)

- Monitor Stations
 - Colorado Springs
 - Hawaii
 - Ascension
 - Diego Garcia
 - Kwajalein

- Ground Antennas

- Master Control

GPS Signal
- Pseudo-random Code
- Navigation Message

Correcting Atmospheric Delays (Ionospheric and Tropospheric Errors)

Ionosphere
Region of the atmosphere (50-300 km MSL) containing ionized particles that reflects radio waves.

Ionospheric errors can be modeled and are incorporated as temporal-specific algorithms in GPS receivers.

Troposphere
Region of the atmosphere (0-20 km MSL) containing water vapor, various gases, and temperature decrease with altitude.

Errors are minimal; nonetheless, tropospheric errors are modeled with ionospheric errors for “typical” meteorological conditions.
Additional Non-Intentional Errors

- **Receiver Noise**
 - Innate Receiver Error (i.e., technological limitations)
 - Carrier-phase < Code-phase

- **Multipath**
 - Signal Bounce or Reflection (i.e., same signal arrives >1 path)
 - Signal Rejection Techniques

Government-Induced Error (Selective Availability)

Error intentionally introduced randomly into satellite-specific clock data by the U.S. Department of Defense

Intention of DOD is to limit accuracy of non-U.S. military and government users for national security

SA can increase error in location by 20x (100 m)

No Longer Activated!

Differentially Corrected GPS (DGPS)

- Real-time DGPS
- Corrections Transmitted via FM Radio Link
- U.S Coast Guard
- OmniStar, Inc.
- $300
 - 150 Broadcast Antennas
 - FM Receiver & Antenna
 - <100 km from Antenna

Not good for mountainous sites

http://www.omnistar.com/
Differentially Corrected GPS (DGPS)

Post-processing DGPS

Roving/Field Unit
Reference/Base Station Unit

Receive Same Errors

< 300 km apart

PathFinder Office Software

Correction

X Y Z

Rover

X Y Z

Base Station

Regional Community Base Stations

http://www.ngs.noaa.gov/CORS/cors-data.html

White = 100 km
Tan = 200 km

PSCC: Pellissippi State College
FRKN: Franklin, NC

Use Pathfinder Software

Augmented GPS

Federal Aviation Administration (FAA)

Wide Area Augmentation System (WAAS)
Local Area Augmentation System (LAAS)

Transmit Correction Message

25 Stations Closest is Atlanta
Accuracy and Cost of GPS Receivers

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Accuracy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garmin Rino</td>
<td>10 m</td>
<td>$250</td>
</tr>
<tr>
<td>GeoExplorer XM</td>
<td>2.5 m</td>
<td>$2500</td>
</tr>
<tr>
<td>PathFinder Pro XR</td>
<td>≤ 1 m</td>
<td>$10000</td>
</tr>
</tbody>
</table>

Ephemeris Ionosphere Troposphere Noise Multipath Clock 3D

<table>
<thead>
<tr>
<th>Type</th>
<th>2.5</th>
<th>5</th>
<th>0.5</th>
<th>0.3</th>
<th>0.6</th>
<th>1.5</th>
<th>10.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGPS</td>
<td>0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
<td>0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Good PDOP!

Helpful GPS Websites & References

GPS Overview
http://www.trimble.com/gps/

Community Base Stations
http://www.ngs.noaa.gov/CORS/Maps.html

WAAS Enabled
http://gpsinformation.net/exe/waas.html

Understanding GPS
E. D. Kaplan, editor
Artech House, Inc.
1996

GPS Products
http://www.trimble.com
http://www.magellandis.com
http://www.garmin.com

GPS: Theory and Practice
Hoffman-Wellenhof, Lichtenegger, & Collins
Springer-Verlag
1997