Bsal is NOT Bs – an emerging pathogen threatening global salamander diversity!

Disease Task Team

PARC has formed a Disease Task Team to facilitate and guide communication on herpetofaunal diseases PARC National Disease Task Team

http://www.parcplace.org/parcplace/ resources/disease-task-team.html

Diseases, Pathogens & Parasites of Herpetofauna Task Team

Task Team Purpose

This team's goal is to increase awareness of herpetofaunal pathogens and the occurrence of disease-related die-offs of herpetofauna in the Southeast. The Task Team is developing information sheets on common herpetofaunal pathogens, protocol for collecting and shipping diseased animals, and instructions on disinfecting field equipment.

The Team also plans to develop an interactive website where herpetofaunal die-offs from diseases can be reported. Possible future directions include organizing workshops on herpetofaunal diseases and submission protocol to diagnostic labs.

Task Team Leaders

- Amanda Duffus (Gordon College)
- Debra Miller (University of Tennessee)

Photo by Todd Pierson

http://separc.org/task-teams/#/ disease-team/

Annual Meeting of Southeast PARC, 18 Feb 2017, Little Rock, AR

Bsal is NOT Bs – an emerging pathogen threatening global salamander diversity!

Matthew J. Gray¹, E. Davis Carter¹, Jennifer A. Spatz¹, J. Patrick Cusaac¹, Laura K. Reinert², Louise Rollins-Smith² and Debra L. Miller^{1,3}

¹UTIA Center for Wildlife Health ²Vanderbilt School of Medicine ³UTIA College of Veterinary Medicine

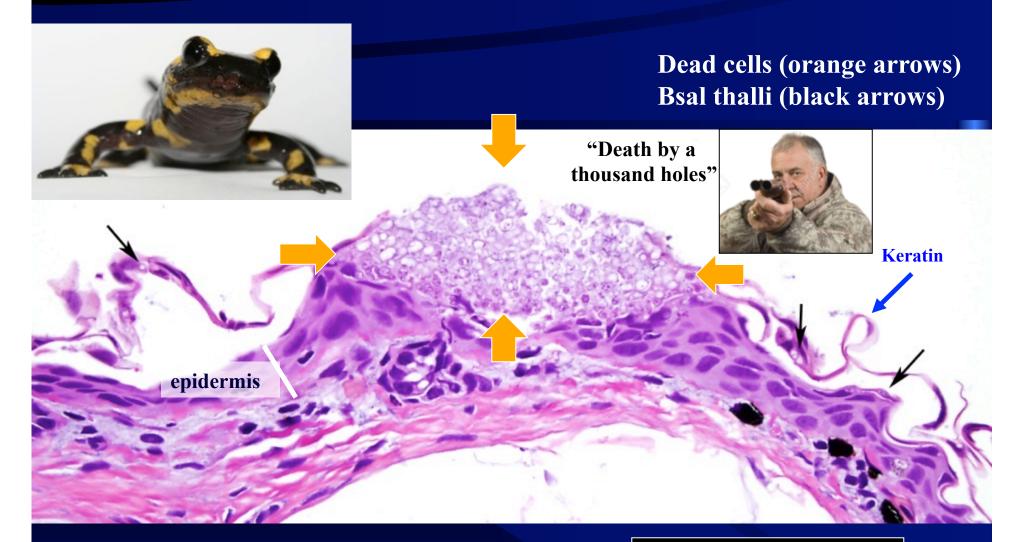
Special Thanks!

Lori Williams, NCWRC Bill Reeves, TWRA Priya Nanjappa, AFWA Vance Vredenburg, San Francisco State University Karen Lips, University of Maryland Frank Pasmans, Ghent University Doug Woodhams, UMass-Boston Gordon Burghardt, UT-Knoxville

*What do we know? Salamandra salamandra

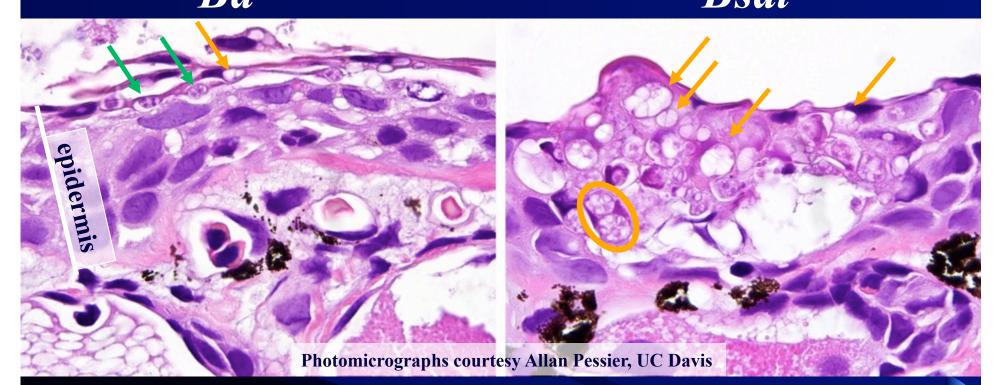
*2010: 96% wild mortality in Netherlands *2013 & 2014: wild mortality in Belgium

- *2015: UK (trade) and Germany (captivity)
- *2016: Netherlands, Belgium, Germany (wild)

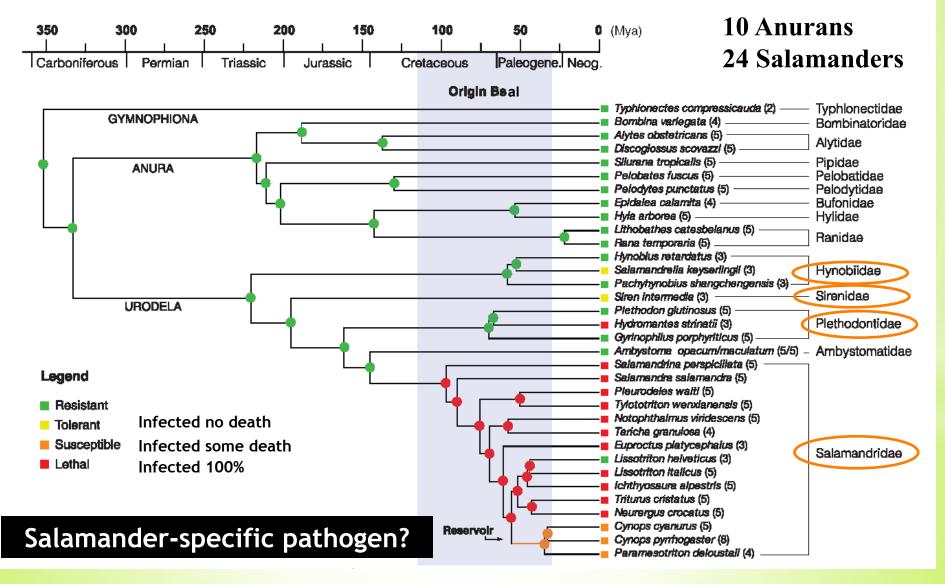

* Present in: (Vietnam, Thailand, * wild salamanders in Asia Japan) * museum records in Asia >150 yrs

Unknown to occur in North America

Martel et al. 2013, PNAS; Martel et al. 2014. Science; Cunningham et al. 2015. Veterinary Record; Sabino-Pinto et al. 2015. Amphibia-Reptilia


A lesion viewed under the microscope...

Multifocal erosions and deep ulcerations of the skin throughout the body Death generally occurs in under 2 weeks Van Rooij et al. (2015)


Photomicrograph courtesy Allan Pessier, UC Davis

How does Bsal chytridiomycosis differ from Bd chytridiomycosis? Bd Bsal

Thickening of the skin (epidermis) and outer keratin layer with numerous thalli in superficial keratinocytes (note various stages; some with zoospores, green arrows; some empty, orange arrows). The cells (keratinocytes) within the epidermis are still distinct and somewhat in layers. Near full-thickness necrosis (loss) of epidermis with numerous chytrid thalli (mostly empty) that frequently show internal septa (colonial thalli; arrows). Orange circle shows an intact cell (keratinocyte) with 2 chytrid thalli in its cytoplasm.

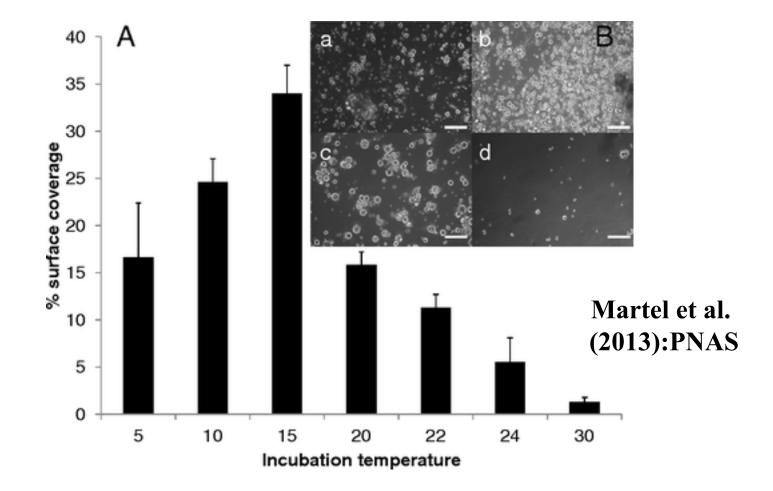
*Why is Bsal a threat?

Martel et al. 2014. Science

North American Species Tested

Martel et al. (2014)

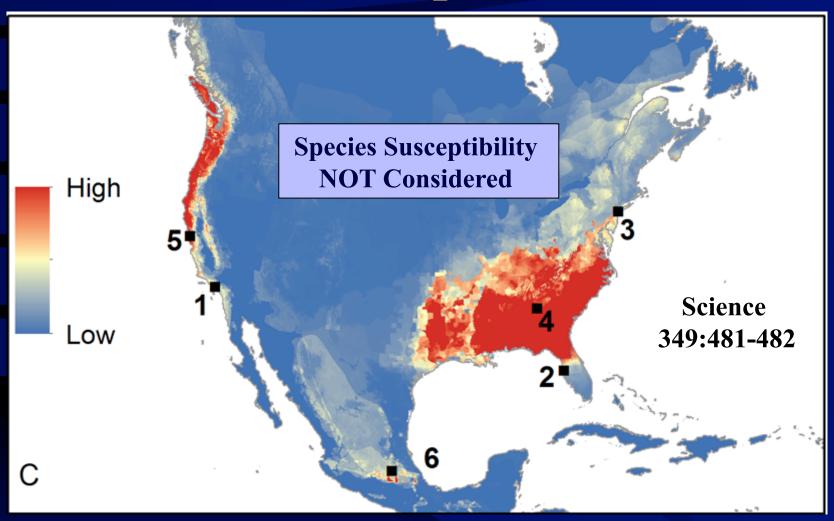
Clinical Disease



Subclinical Disease (Tolerant) Small *n* and one dose (5 x 10³ zoospores)

Not infected (or cleared it):

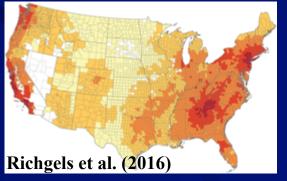
Thermal preference



#salamander species by state

THE PERILS

Risk Model: Yap et al. (2015)



Final Risk Assessment Model - Relative Risk = SpRich * Log ClimSuit Bsal

Research Objectives

- 1. Test the susceptibility of various North American amphibian species to *Bsal*
 - Tested 10 salamander and 4 anuran species
 - Susceptibility: infection, mortality, & disease
 generally across 4 *Bsal* doses (n = 10 / dose)
- 2. Test if *Bsal* exposure altered behavior of North American amphibian species
 - Locomotion and use of cover objects among
 Bsal doses

Robustly estimate RISK

Study AnimalsSalamanders (10; 4)Frogs (4; 2)

Lithobates sylvaticus, L. chiricahuensis, L. catesbeianus, Hyla chrysoscelis

Ambystoma opacum, A. laterale, Desmognathus ocoee,
 D. aeneus, D. monticola, Plethodon shermani x P.
 teyahalee, P. metcalfi, Necturus maculosus,
 Cryptobranchus alleganiensis, and Eurycea wilderae

Doses & Sample	Sizes:	Doses: 5 x 10 ³⁻⁶ Zoospore	s 10 p	Target er dose, 5	
species	UE = ive; juv.	Treatments	n/treatment	Controls	Total Animals
Ambystoma opacum		ntrol, 10^3, 10^4, 10^5, 10^6	10	10	50
Plethodon shermani/teyahalee	Cor	ntrol, 10^3, 10^4, 10^5, 10^6	7	6	34
Lithobates sylvaticus	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	5	5	25
Lithobates chiricahuensis	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	8	8	40
Lithobates catesbeianus	[Control, 5*10^6	4	1	5
Hyla chrysoscelis	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	10	10	50
Desmognathus ocoee	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	10	5	45
Ambystoma laterale	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	5	4	24
Necturus maculosus	Contr	rol, 5*10^3, 5*10^4.5, 5*10^6	4 or 5	2	16
Plethodon metcalfi	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6		ust 5	45
Desmognathus aeneus	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	10 Fir	ished 5	45
Desmognathus monticola	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	10	8	48
Cryptobranchus alleganiensis	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	6 or 7	3	30
Eurycea wilderae	Control,	5*10^3, 5*10^4, 5*10^5, 5*10^6	5	5	25

Mucosome

Wild: Bd swab

Methods Culture & Enumeration

Exposure

10 mL in 100 mL 24 hour container

Chambers: 15 C

Daily Checks: 6 weeks

Swabs: 4 days PE, every 6 days

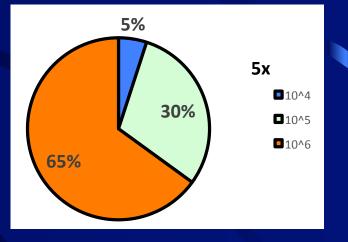
Necropsy

qPCR (Blooi et al. 2016)

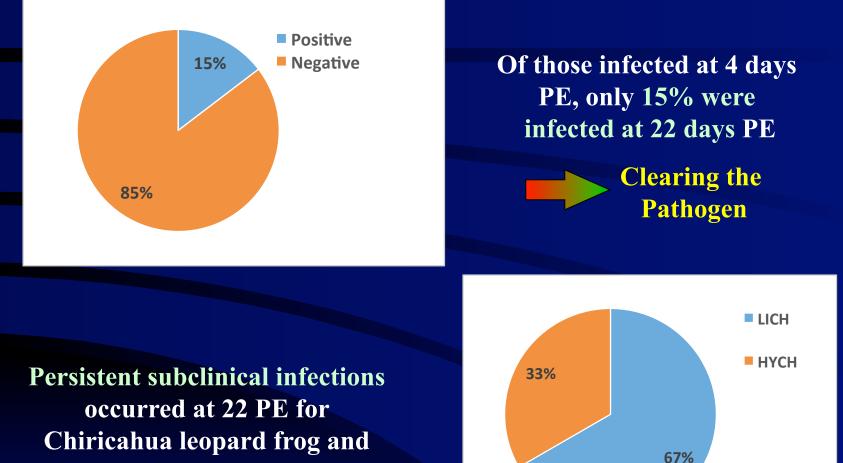
Results: Mortality

Species	# controls	s Control		#/treatmen	t 10	10^3		10^4		10^5		10^6	
<i>n</i> = 437		Deaths	Percent dead		Deaths	Percent dead	Deaths	Percent dead	Deaths	Percent dead	Deaths	Percent dead	
Bsal-Ambystoma opacum	10	0	0	10	0	0	0	0	0	0	0	0	
Bsal-Plethodon shermani/ teyahalee	7	0	0	7	0	0	0	0	0	0	0	0	
Bsal-Lithobates sylvaticus	5	0	0	5	0	0	2	40	0	0	1	20	
Bsal-Lithobates chiricahuensis	7	1	14.28	8	0	0	1	12.5	0	0	0	0	
Bsal- Lithobates catesbeianus	1	0	0	4	0	0	0	0	0	0	0	0	
Bsal-Hyla chrysoscelis		•	qPC	CR of S	Skin, 7	Foes a	t dea	th: ne	egati	ve		0	
Bsal- Desmognathus ocoee	•	Nol	histol	ogical	evider	nce of	Bsal	chytr	idio	myco	sis	0	
Bsal- Ambystoma laterale	4	0	0	5	0	0	0	0	0	0	0	0	
	# cor	ntrols	Contr	ol ‡	#/treatment	10^	3 (n=5)		10^4.5 (n=5)	10^6	(n=5)	
		C	eaths	Percent dead		Deaths	Perce dea	De	aths	Percent dead	Deaths	Percent dead	
Bsal- Necturus maculos	us	2	0	0	4 or 5	1	20)	1	25	0	0	

LISY = 24, 31, 34 PE


LICH = 25 PE NEMA = 4 and 24 PE

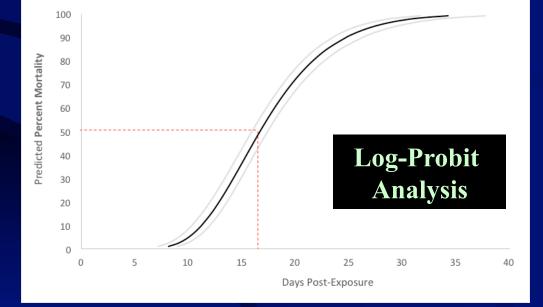
Results: Infection


100% 90% 80% Died and not positive 70% 60% Survived and not positive 50% Survived and positive 40% 30% Died and positive 20% 10% 0% LICH LICA LIST HYCH AMUS AND WEND DEOC DISHY

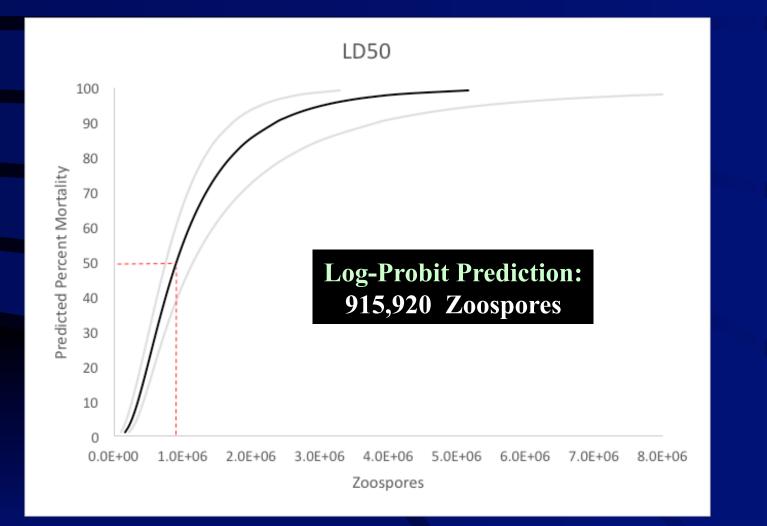
qPCR: 1st Swab (4 days PE)

- 10-60% sub-lethal infection including anuran species!
- Greatest infection at <u>high</u>
 <u>doses</u>

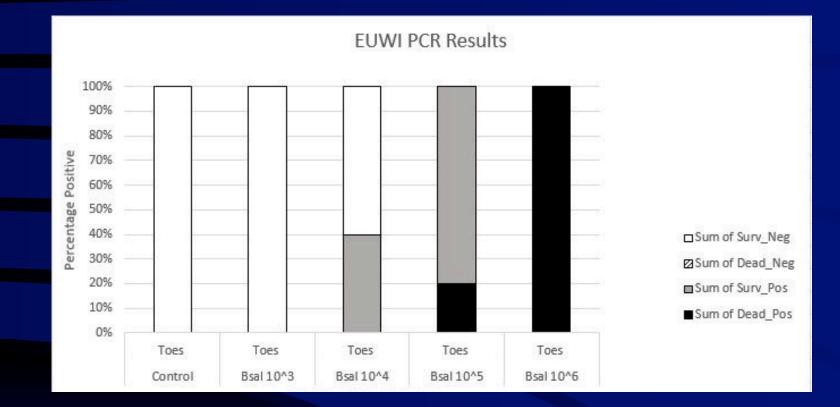
Infection at 22 PE (4th Swab)


Cope's gray tree frog

Survival and Time to Death : EUWI

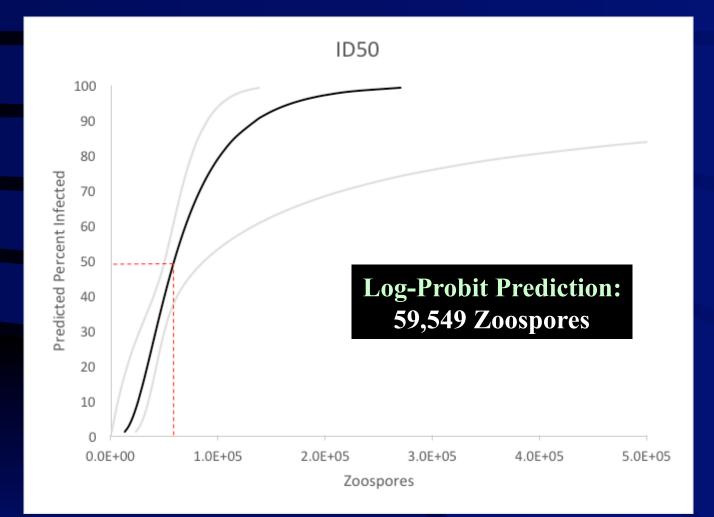

5 x 10⁶ 10-27 days 5 x 10⁵ 41 days

Of those that died, Median time to death = 16.7 days

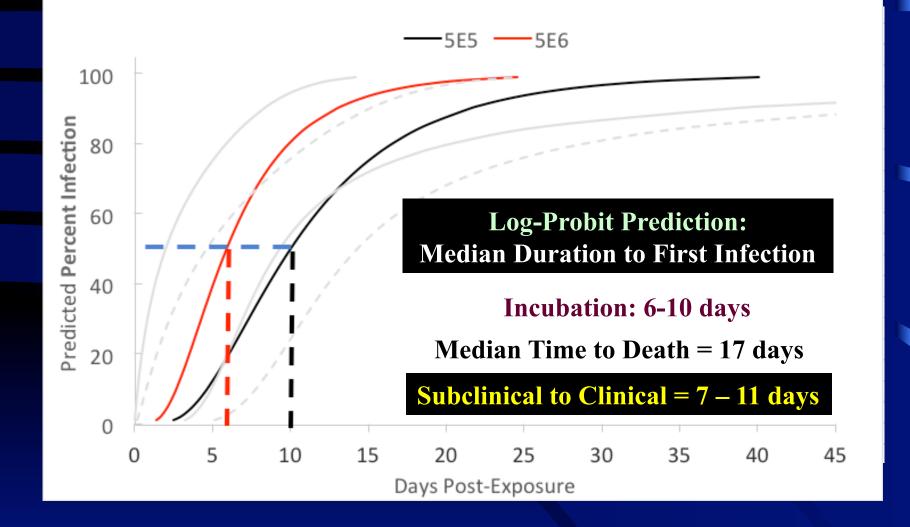


LD-50: EUWI

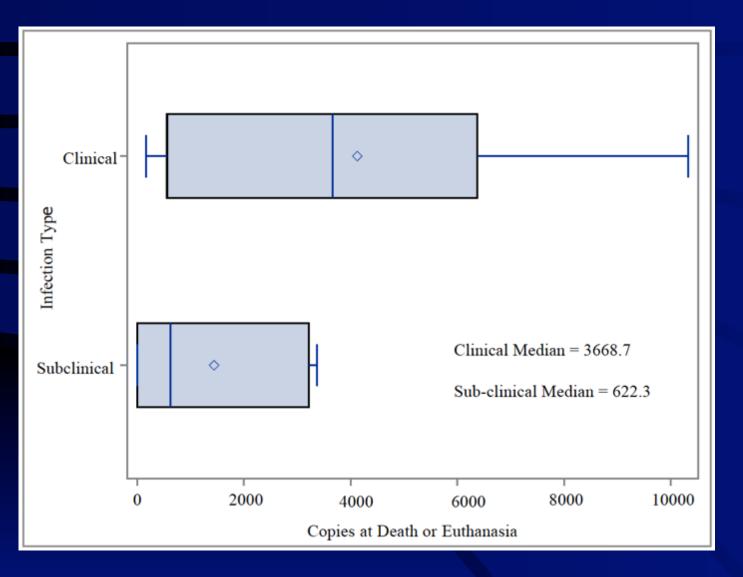
Zoospores per 10 mL


Final Pathogen Prevalence: EUWI

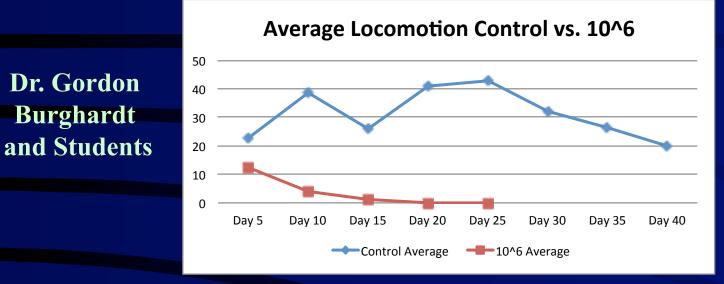
Of those infected at the endpoint of the experiment, 50% died, 50% survived (dose-dep response)


ID-50: EUWI

Zoospores per 10 mL


Infection Dynamics: EUWI

Prevalence: PE Duration and Dose


Pathogen Load: EUWI

Subclinical vs Clinical Infection

Bsal and Behavior: EUWI

5 x 10⁶ vs. Controls

EUWI Feeding 100 90 Control 80 Bsal 10^3 Perecentage eaten 70 60 Bsal 10^4 50 Bsal 10^5 40 30 Bsal 10^6 20 10 0 Day 4 Day 7 Day 10 Day 13 Day 16 Day 19 Day 22 Day 25 Day 28 Day 31 Day 34 Day 37 Day 40

Gross Signs: EUWI

Histological Signs: EUWI

Mild to moderate and diffuse

Mid-depth (with surface) crater formation

Skin sloughing on trunk

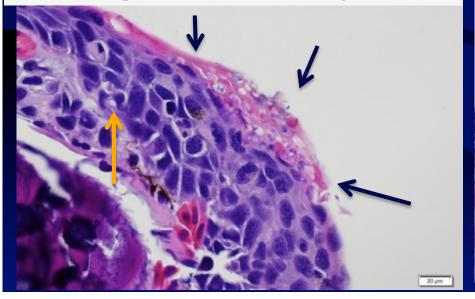
S. The relation

Animal that died with significant lesions and Ct of 26 (skin) and 27 (toe) at necropsy

20 µm

More superficial and somewhat diffuse

Raft of keratin with thali. No epidermis remains


Histological Signs: EUWI

Polyp

Animal with minimal lesions and Ct of 34 (skin) and 39 (toe) at necropsy

Toe with beginning crater formation (black arrows) & epidermal necrosis (orange arrow)

Tail with thick epidermis, extensive necrosis and numerous thali

Conclusions

No significant mortality was observed for 13 North American amphibian species (6 families) exposed to up to 4 doses of *Bsal*

Infection occurred in all (9 tested) species
 4 days PE to *Bsal*, including the globally
 traded American bullfrog

• Host range may be wider than expected at higher doses

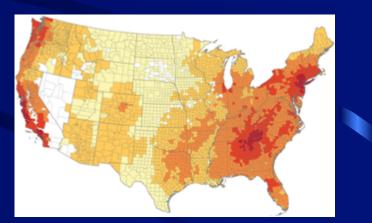
 However, infection in most species tested was short duration (<2 weeks)

Conclusions

- *Eurycea wilderae* was susceptible at 3 of the 4 doses
 - **ID 50 = 60,000 zoospores**
 - LD 50 = 900,000 zoospores
 - Become Infectious = 6 10 days PE
 - Clinical Disease = 17 days PE

Bsal may represent a significant conservation risk to EUWI and perhaps other *Eurycea* spp.

- In addition to *Notophthalamus* and *Taricha*, Bsal surveillance should focus on *Eurycea*
- Additional Bsal challenges with *Eurycea* is warranted
- 28 *Eurycea* spp in North America (43% are listed as VU or EN by IUCN)


Eurycea Diversity

Endangered	Vunerable	Least Concern	Data Deficient	Region
			Eurycea aquatica	AL, GA, TN
		Eurycea bislineata		Eastern US
			Eurycea chamberlaini	NC, SC
	Eurycea chisholmensis			ТХ
		Eurycea cirrigera		Eastern US
		Eurycea guttolineata		Southeastern US
	Eurycea junaluska			TN, NC
	Eurycea latitans			ТХ
int is		Eurycea longicauda		Eastern US
		Eurycea lucifuga		South-central US
		Eurycea multiplicata		MO, AR, OK
	Eurycea nana			ТХ
Eurycea naufragia				ТХ
	Eurycea neotenes			TX
			Eurycea pterophila	TX
		Eurycea quadridigitata		Southeastern US
	Eurycea rathbuni			ТХ
			Eurycea robusta	TX
	Eurycea sosorum			ТХ
		Eurycea spelaea		MO, AR, OK
			Eurycea subfluvicola	AR
Eurycea tonkawae				TX
	Eurycea tridentifera			TX
			Eurycea troglodytes	TX
NULL CONTRACTOR	Eurycea tynerensis			OK, AR, MO
日本語の語が目	Eurycea wallacei			FL
	Eurycea waterlooensis			TX
1 Ali		Eurycea wilderae		Southern Appl

Future Directions

- Test additional species
 - Unique genera (*Aneides, Hemidactylium, Anaxyrus*) – First two ONGOING.
 - Mexico (*Pseudoeurycea, Chiropterotriton, and Bolitoglossa*) Gabriela Parra Olea
 - Newts: Notophthalmus perstriatus, N. meridionalis, and N. viridescens (6 populations)
 - Axolotl: A. mexicanum
- Use information to inform risk models (Yap et al. 2015:NA, Richgels et al. 2016: USA, Feldmeier et al. 2016: Europe)

• Identify amphibian attributes (e.g., mucosome properties) that contributes to immunity

Questions??

Photo: A. Balseiro

mgray11@utk.edu dmille42@utk.edu louise.rollins-smith@Vanderbilt.Edu

VANDERBILT UNIVERSITY

