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Abstract
Ranaviruses have been associated with mortality of lower vertebrates around the world. Frog virus 3 (FV3)-like

ranaviruses have been isolated from different ectothermic vertebrate classes; however, few studies have demonstrated
whether this pathogen can be transmitted among classes. Using FV3-like ranaviruses isolated from the American
bullfrog Lithobates catesbeianus, eastern box turtle Terrapene carolina carolina, and Pallid Sturgeon Scaphirhynchus
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SUSCEPTIBILITY OF FISH AND TURTLES TO RANAVIRUS 119

albus, we tested for the occurrence of interclass transmission (i.e., infection) and host susceptibility (i.e., percent
mortality) for five juvenile fish and three juvenile turtle species exposed to each of these isolates. Exposure was
administered via water bath (103 PFU/mL) for 3 d and survival was monitored for 28 d. Florida softshell turtles
Apalone ferox experienced no mortality, but 10% and 20% of individuals became infected by the turtle and fish
isolate, respectively. Similarly, 5% of Mississippi map turtles Graptemys pseudogeographica kohni were subclinically
infected with the turtle isolate at the end of the experiment. Channel Catfish Ictalurus punctatus experienced 5%
mortality when exposed to the turtle isolate, while Western Mosquitofish Gambusia affinis experienced 10% mortality
when exposed to the turtle and amphibian isolates and 5% mortality when exposed to the fish isolate. Our results
demonstrated that interclass transmission of FV3-like ranaviruses is possible. Although substantial mortality did not
occur in our experiments, the occurrence of low mortality and subclinical infections suggest that fish and aquatic
turtles may function as reservoirs for FV3-like ranaviruses. Additionally, our study is the first to report transmission
of FV3-like ranaviruses between fish and chelonians.

Transmission of viruses among vertebrate classes (hereafter
referred to as interclass transmission) is uncommon. Viral infec-
tion is a complex process that involves several steps and exploits
a variety of cellular activities (Su et al. 2008; Cronin et al. 2010;
Jackson et al. 2010; Paull et al. 2012). The first and perhaps
quintessential challenge a virus has to overcome after entering
a new host is its replication. Once inside the new cell, a virus
has to uncoat, transport its genetic material to the appropriate
cellular compartment, gather all the necessary replication ma-
chinery, produce copies of its genome and virion components,
and package the genome into the capsids (Webby et al. 2004;
Acheson 2007). If a virus successfully replicates in the new host
cell, there are other obstacles that limit it from infecting its new
host. The virus must exit the cell (i.e., exocytosis or lysis of
the cell), overcome or avoid the host’s immunological response,
infect other cells quickly, and be shed from the host so transmis-
sion to other hosts can occur (Webby et al. 2004; Bandin and
Dopazo 2011; Crispe et al. 2011; Starick et al. 2011).

This complex process of host establishment makes interclass
transmission unlikely in most cases. However, several viruses
have found ways to overcome these obstacles, and examples
of viruses transmitting between species have been recorded
(Webby and Kalmakoff 1998; Keesing et al. 2010; Boelle et al.
2011; Swayne 2011). For example, some large double-stranded
DNA (dsDNA) viruses in the family Iridoviridae are known to
infect multiple amphibian species (Hoverman et al. 2011). Iri-
doviruses enter the cell carrying start-up proteins that are used
to initiate genome replication and protein production, thereby
facilitating virus replication in the host cell (Chinchar 2002;
Chinchar et al. 2011). The highly conserved major capsid pro-
tein of the virus and widely distributed cell receptors targeted
by the pathogen likely contribute to the wide host range of iri-
doviruses. Currently, five genera within the family Iridoviridae
are recognized (King et al. 2012): two genera, Iridovirus and
Chloriridovirus, infect arthropods (Camazine and Liu 1998;
Hunter et al. 2001; Marina et al. 2003; Gregory et al. 2006),
two genera, Lymphocystivirus and Megalocytivirus, infect fish
(Sudthongkong et al. 2002; Palmer et al. 2012; Rimmer et al.
2012; Waltzek et al. 2012), and one genus, Ranavirus, has been

isolated from amphibians, fish, and reptiles (Chinchar et al.
2009; Cinkova et al. 2010; Vesely et al. 2011; Nazir et al. 2012;
Robert and Chinchar 2012).

Ranaviruses have been associated with disease and mortal-
ity in numerous lower vertebrate species, including amphibians,
fishes, and reptiles and are considered a pathogen of ecological
and economic importance (Chinchar 2002; Keesing et al. 2010;
Robert and Chinchar 2012; Gray and Miller 2013). Currently,
the International Committee on Taxonomy of Viruses recog-
nizes six species of ranaviruses (Jancovich et al. 2010; King
et al. 2012). Three of the species infect fish exclusively: the epi-
zootic hematopoietic necrosis virus, European catfish virus, and
Santee–Cooper ranavirus (Bigarre et al. 2008; Chinchar et al.
2009; Whittington et al. 2010; Bang-Jensen et al. 2011a; Vesely
et al. 2011). The other species—Frog Virus 3 (FV3), Ambystoma
tigrinum virus (ATV), and Bohle iridovirus (BIV)—have been
isolated most frequently from amphibian hosts, but might infect
and cause disease in other ectothermic vertebrates. For exam-
ple, ATV is known to cause high mortality in tiger salamanders
Ambystoma tigrinum (Jancovich et al. 2003; Collins et al. 2004)
and has been reported to cause infection in the Largemouth
Bass Micropterus salmoides (Picco et al. 2010). Also, BIV was
originally isolated from an amphibian (Speare and Smith 1992;
Cullen et al. 1995; Cullen and Owens 2002; Weir et al. 2012), but
can infect fish and turtles (Moody and Owens 1994; La Fauce
et al. 2012). Recently, transmission of FV3-like ranaviruses was
demonstrated in fish (Bang-Jensen et al. 2009, 2011a; Bayley
et al. 2013), chelonians (Allender et al. 2006, 2013; Johnson
et al. 2010), and multiple amphibian species (Hoverman et al.
2011).

Despite these findings, the host range of FV3-like ranaviruses
remains unclear, especially with North American fish and chelo-
nian species (Gray et al. 2009). Also, the possibility of interclass
transmission of FV3-like ranaviruses has not been investigated
extensively (Bayley et al. 2013). Our objective was to deter-
mine whether three FV3-like ranaviruses isolated from hosts
of three different ectothermic classes—amphibians (Amphibia),
reptiles (Reptilia), and bony fishes (Osteichthyes)—were able to
cause infection and mortality in fish and turtle species known to
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120 BRENES ET AL.

coexist with amphibians or that are important to the aquaculture
industry in North America. If interclass transmission is possi-
ble, fish and turtles may be important reservoirs of FV3-like
ranaviruses (Gray et al. 2009), particularly in habitats where
amphibians are not present yearlong.

METHODS
Ranaviruses and hosts.—The FV3-like ranaviruses used

in our study were isolated from a morbid Pallid Sturgeon
Scaphirhynchus albus in Missouri (T. B. Waltzek, unpublished
data), eastern box turtle Terrapene carolina carolina in Ken-
tucky (Ruder et al. 2010), and American bullfrog Lithobates
catesbeianus in Georgia (Miller et al. 2007). We tested five
fish species: Nile Tilapia Oreochromis niloticus, Channel
Catfish Ictalurus punctatus, Western Mosquitofish Gambusia
affinis, Bluegill Lepomis macrochirus, and Fathead Minnow
Pimephales promelas. All fish species were fingerlings (about
5–10 cm in length) and were obtained from commercial
hatcheries (Table 1). Fish were reared from fry in independent,
outdoor, concrete troughs with constant water flow and had no
contact with other species. Upon purchase and arrival at the
University of Tennessee, a random sample of five individuals
was humanely euthanized by immersion in a solution of
benzocaine hydrochloride (100 mg/L: Iwama and Ackerman
1994) and tested for ranavirus infection using quantitative
real-time PCR (qPCR; see methods below); all qPCR results
were negative. Prior to the start of the experiments, fishes were
acclimated in the laboratory for 1 week in separate 1,200-L
tanks with flow-through, dechlorinated water (75.7 L/s) at 26◦C
with 12 h light : 12 h dark photoperiod. During the acclimation
period, fish were fed a commercial high protein fish food
(TetraMin, Blacksburg, Virginia) daily ad libitum.

We tested three aquatic turtle species: Florida softshell turtle
Apalone ferox, eastern river cooter Pseudemys concinna, and
Mississippi map turtle Graptemys pseudogeographica kohni.
Turtles were purchased as 15-d-old hatchlings (approximately
5 cm in length) from commercial retailers (Table 1). All species
were raised in captivity and in isolation from other species prior
to shipment to the University of Tennessee. Turtles were housed

under identical conditions as were the fish, except floating plat-
forms were added to the 1,200-L tanks and specialized lamps
were provided for thermal and ultraviolet (UV) light exposure
(Zoo Med Powersun UV Self-Ballasted Mercury Vapor UVB
Lamp, San Luis Obispo, California). A random sample of five
individuals per species was collected and euthanized to verify
individuals were not infected with ranavirus prior to exper-
imentation; all individuals tested negative by qPCR. Turtles
were fed live crickets and bloodworms once daily ad libitum.

Fish challenges.—Each experimental trial consisted of four
treatments with 20 replicate fish per treatment, totaling 80 ex-
perimental units. The treatments were three ranavirus isolates
and a negative control. Eighty fish were randomly selected from
the 1,200-L tank and placed individually into 4-L (17.7 × 17.7
× 28.5 cm) tubs filled with 2 L of dechlorinated, aged tap water;
the tubs were placed on 122 × 244-cm shelving units. Prior to
adding the fish, each container was randomly assigned to a viral
or control treatment in a randomized block design, in which
two shelf heights were the blocking variables. Viral treatments
were inoculated with 103 PFU/mL of the appropriate virus iso-
late, and the controls were inoculated with the same quantity of
virus-free media (i.e., MEM Eagle, Sigma-Aldrich, Seelze, Ger-
many). We used 103 PFU/mL because it has been suggested that
this concentration is ecologically relevant (Gray et al. 2009).
Rojas et al. (2005) reported this titer of ranavirus in water shed
by an infected salamander. Dose-dependent studies (e.g., Brun-
ner et al. 2005) show that mortality is low typically when am-
phibian larvae are exposed to <100 PFU/mL of ranavirus. Less
information is available on the dose-dependent relationships of
ranavirus and fish hosts, but the viral titer we used is known to
cause ranaviral disease in fish (Moody and Owens 1994; Grizzle
et al. 2002; Gobbo et al. 2010). Individuals were exposed to the
virus in stagnant water for 3 d, which has become standard for
ranavirus challenges with amphibians due to no apparent effect
of exposure duration on pathogenicity of ranavirus (Hoverman
et al. 2010, 2011). Given that fish were negative for ranavirus at
the beginning of each experiment, the inoculations likely repre-
sented a first-time exposure to the pathogen, which is standard
in ranavirus-challenge experiments (Bang-Jensen et al. 2011a;
Jaramillo et al. 2012).

TABLE 1. Vendors for specimens during the challenge experiments.

Species Vendor

Nile Tilapia Oreochromis niloticus Greenwater Fish Farm, Milan, Tennessee
Channel Catfish Ictalurus punctatus Greenwater Fish Farm, Milan, Tennessee
Western Mosquitofish Gambusia affinis Alabama Aquarium and Pond Services, Birmingham, Alabama
Bluegill Lepomis macrochirus Bell Springs Fish Hatchery, Riceville, Tennessee
Fathead Minnow Pimephales promelas Bell Springs Fish Hatchery, Riceville, Tennessee
Florida softshell turtle Apalone ferox JP Pets, Sanford, Florida
Eastern river cooter Pseudemys concinna JP Pets, Sanford, Florida
Mississippi map turtle Graptemys pseudogeographica kohni Backwater Reptiles, Sacramento, California
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SUSCEPTIBILITY OF FISH AND TURTLES TO RANAVIRUS 121

During experiments, fish were fed high-protein commercial
food every day at a ratio of 3% of body mass, which is suffi-
cient for normal growth and development (Budy et al. 2011).
The amount of food required was calculated based on the body
mass of a separate sample of five nonexperimental fish that were
treated in a manner identical to the controls. Fish were monitored
twice daily for survival and morbidity. Dead individuals were
removed from their containers, necropsied, and any gross signs
of ranaviral infection recorded. Fish that exhibited morbidity
consistent with ranaviral disease (i.e., petechial hemorrhages,
edema, and loss of equilibrium) for >24 h during the experi-
ment were humanely euthanized by immersion in benzocaine
hydrochloride solution (100 mg/L). Water was changed (100%
of volume) every 3 d to maintain water quality during the exper-
iment (Hoverman et al. 2010), and laboratory temperature was
monitored and maintained at 26◦C. Duration for all trials was 28
d, which is sufficient duration for morbidity to be observed from
ranavirus infection (Bang-Jensen et al. 2009, 2011a; Jaramillo
et al. 2012). At the end of each experiment, all surviving indi-
viduals were humanely euthanized by immersion in 100 mg/L
of benzocaine hydrochloride (Iwama and Ackerman 1994).

Turtle challenges.—Turtle experiments followed the same
procedures as the fish challenges with three exceptions. First,
the turtles were housed in 15.5-L containers (41.6 × 28.6 ×
18.7 cm) containing 2 L of dechlorinated, aged tap water (ap-
proximately 3 cm depth). This amount of water was sufficient to
allow the turtle to fully immerse its body while maintaining its
head above water. Second, during the experiments, turtles were
fed two live crickets per day, which was sufficient for normal
growth and development (Teece et al. 2001). Lastly, individuals
that exhibited gross signs of ranaviral disease (e.g., cutaneous
abscessation, oral ulceration or abscessation, respiratory dis-
tress, anorexia, and lethargy: Allender et al. 2006; Johnson et al.
2006) and survivors at the end of the experiment were humanely
euthanized via intravenous injection of 60–100 mg/kg of sodium
pentobarbital. All procedures followed approved University of
Tennessee Institutional Animal Care and Use Committee proto-
col 2052.

Ranavirus testing.—Genomic DNA (gDNA) was extracted
from a tissue homogenate of the kidney and liver collected
during necropsy using the DNeasy Blood and Tissue Kit
(Qiagen, Valencia, California).We used a Qubit fluorometer and
the Quant-iT dsDNA BR Assay Kit to quantify the concentra-
tion of gDNA in each sample (Invitrogen, Carlsbad, California).
Quantitative real-time PCR (qPCR) was used to amplify a 70-bp
sequence of the ranavirus major capsid protein using primers and
protocol identical to Picco et al. (2007). The extracted DNA sam-
ples were run in duplicate, and an individual was declared posi-
tive if the qPCR cycle threshold (CT) was <30 for both samples.
This CT decision rule was determined for our PCR system (ABI
7900 Fast Real-Time PCR System; Life Technologies Corpora-
tion, Carlsbad, California) by developing a standard curve with
95% CIs using known quantities of ranavirus. For qPCR-positive
individuals, we reported the predicted PFU per 0.25 µg of host

gDNA as a relative indicator of viral load. Four controls were
included in each qPCR assay: DNA extracted from a ranavirus-
positive animal, DNA extracted from a ranavirus-negative ani-
mal, DNA extracted from cultured ranavirus, and water.

Statistical analyses.—We summarized the results as individ-
uals that died and were infected (case mortality), survived and
were infected (subclinical infection), and died but were not in-
fected (natural mortality). For our study, we defined infection
as qPCR positive according to our CT decision rule, which is
common in transmission studies (e.g., Brunner et al. 2005; Hov-
erman et al. 2011). Given that quiescent infections are possible
with ranaviruses (Robert et al. 2011) and active replication is un-
necessary for qPCR to amplify viral DNA (Green et al. 2009),
it is possible that our qPCR positive results did not represent
active infections. Nonetheless, detection of ranavirus DNA via
qPCR is evidence of transmission in our study considering that
prescreening resulted in no positive results, and our experiment
was designed based on independent water bath challenges. For
each species, we tested for the difference in case mortality and
infection prevalence (i.e., qPCR positive) among the ranavirus
isolates using a G-test of maximum likelihood (Sokal and Rohlf
1995). All analyses were performed using SAS 9.3 (SAS 2012)
at α = 0.05.

RESULTS
Two fish species experienced case mortality: Channel Catfish

and Western Mosquitofish (Figure 1). The catfish experienced
5% mortality when exposed to the fish isolate, while the
mosquitofish experienced 10, 10, and 5% mortality when
exposed to the turtle, amphibian, and fish isolates, respectively.
Average viral load for infected fish tissue (0.25 µg) was 8.9
PFU (Table 2). No statistical differences were detected in case
mortality (G = 5.71, df = 12, P = 0.28) or infection prevalence
(G = 18.94, df = 12, P = 0.13) among the three isolates. Catfish
died between 16 and 24 d postexposure, while mosquitofish
began to die after 4 d postexposure to the virus (Figure 3).

No deaths were documented in turtles exposed to ranavirus;
however, infection occurred in two species (Figure 2). After
exposure to the turtle and fish isolates, 10% and 20% of Florida
softshell turtles, respectively, were infected. The Mississippi
map turtle experienced 5% infection when exposed to the
box turtle isolate. Average viral load for infected turtle tissue
(0.25 µg) was 228 PFU, and was greatest for Florida softshell
turtles exposed to the box turtle isolate (Table 2). No statistical
differences were detected in infection prevalence (G = 7.32,
df = 12, P = 0.19) among the three isolates.

DISCUSSION
Our study documented two new cases of interclass trans-

mission: (1) transmission of a FV3-like ranavirus isolated from
a fish to a turtle species, and (2) transmission of a FV3-like
ranavirus isolated from a turtle to a fish species. We also doc-
umented transmission of a FV3-like ranavirus isolated from an
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FIGURE 1. Percent mortality and infection of five fish species (Channel Cat-
fish, Nile Tilapia, Western Mosquitofish, Fathead Minnow, and Bluegill) ex-
posed to three ranavirus isolates from different ectothermic vertebrate hosts:
turtle, fish, and amphibian. Results are based on exposure of 20 individuals per
fish species per ranavirus isolate for 28 d. Infection was determined via qPCR
and may not represent occurrence of active virus replication in the host.

amphibian to a fish species, which has been reported by oth-
ers (e.g., Bang-Jensen et al. 2009, 2011b; Gobbo et al. 2010;
Picco et al. 2010). These results provide additional evidence
that FV3-like ranaviruses can be transmitted among ectother-
mic vertebrate classes.

We documented 5% mortality of Channel Catfish exposed to
the turtle isolate, and 5–10% mortality of Western Mosquitofish
exposed to fish, turtle, or amphibian isolates. Although this
level of mortality is low, these results suggest that ranavirus
could negatively impact aquaculture industries (Prasankok et al.

TABLE 2. Viral load (PFU) in a homogenate of liver and kidney tissue
(0.25 µg) of infected individuals exposed to three FV3-like ranavirus isolates
from a morbid turtle (eastern box turtle), a fish (Pallid Sturgeon), and an am-
phibian (American bullfrog).

Species Isolate PFU

Western Mosquitofish Turtle 11.7
Fish 10.2
Amphibian 12.1

5.2
Channel Catfish Turtle 5.2
Florida softshell turtle Turtle 760

606
Fish 1.6

1.1
1.4
0.8

Mississippi map turtle Turtle 2.6

2002; Bang-Jensen et al. 2011b; Vesely et al. 2011). Bang-
Jensen et al. (2011b) reported that ranaviruses were a concern to
the aquaculture industry in the European Union, and the occur-
rence of subclinically infected individuals in international fish
trade could result in the emergence of ranavirus. Production of
Channel Catfish and Western Mosquitofish are major industries
in the United States (Mischke et al. 2013; Torrans et al. 2013).
Additionally, mosquitofish are commonly released as biologi-
cal control agents into natural aquatic systems containing native
populations of ectothermic vertebrates (Griffin and Knight 2012;
Samidurai and Mathew 2013). The fact that mosquitofish can
be subclinically infected with FV3-like ranaviruses is a conser-
vation concern.

The species of ranaviruses that are found exclusively in fish
hosts (i.e., epizootic hematopoietic necrosis virus, European
catfish virus, and Santee–Cooper ranavirus) are known to cause
significant morbidity and mortality in several fish species around
the world (Bigarre et al. 2008; Picco et al. 2010; Whittington
et al. 2010; Bang-Jensen et al. 2011b; Vesely et al. 2011). The
ranavirus BIV can cause significant mortality in Barramundi
Lates calcarifer (Moody and Owens 1994). However, FV3-like
and ATV ranaviruses appear to cause subclinical infections and
low mortality in fish (Bang-Jensen et al. 2009; 2011a; Gobbo
et al. 2010; Picco et al. 2010). The reduced susceptibility of
fish to ATV and FV3-like ranaviruses could be a result of host
specificity for cell entry and replication, or an inability to bypass
the fully functional immune system of fish (Grayfer et al. 2012).

The low susceptibility of the turtles that we tested to ranavirus
was unexpected, as cases of ranavirus infection and disease
have been reported in at least 11 tortoise and box turtle species
(Marschang et al. 1999; De Voe et al. 2004; Benetka et al. 2007;
Johnson et al. 2007, 2010; Marschang 2011), red-eared slider
turtle Trachemys scripta elegans (Johnson et al. 2006, 2010;
Allender et al. 2013) and Chinese softshell turtle Pelodiscus
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FIGURE 2. Percent mortality and infection of three turtle species (eastern
river cooter, Florida softshell turtle, and Mississippi map turtle) exposed to three
ranavirus isolates from different ectothermic hosts: turtle, fish, and amphibian.
Results are based on exposure of 20 individuals per turtle species per ranavirus
isolate for 28 d. Infection was determined via qPCR and may not represent
occurrence of active virus replication in the host.

sinensis (Chen et al. 1999) in both natural and laboratory en-
vironments (Chen et al. 1999; De Voe et al. 2004; Allender
et al. 2006; Johnson et al. 2008). However, most of these re-
ports were diagnostic cases on a single individual or challenge
experiments via isolate injection, which may be an unrealistic
transmission route (Gray et al. 2009). Allender et al. (2013)
reported greater susceptibility of adult red-eared slider turtles
injected with ranavirus at 21◦C compared with 28◦C. Given
that our experiment was performed at 26◦C, the lower infec-
tion we observed could have been influenced by temperature.
More information is needed on the susceptibility of chelonians
to ranavirus, and the role of temperature.

Our susceptibility results likely reflect a best-case scenario
inasmuch as our experiments were conducted under controlled
conditions with food provided ad libitum. Additionally, fac-
tors that contribute to ranavirus emergence such as density-
dependent transmission were controlled. In wild or captive
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FIGURE 3. Survival curves of fish species (Channel Catfish and West-
ern Mosquitofish) that experienced mortality when exposed to ranavirus iso-
lates from three different ectothermic vertebrate classes (i.e., turtle, fish, and
amphibian).

populations, multiple infected and morbid individuals can be
present, which might increase the likelihood of transmission
to other ectothermic vertebrates, particularly those that predate
(e.g., fish) or scavenge (e.g., turtles) other hosts.

The majority of individuals in our study tested negative for
ranavirus DNA in liver and kidney tissue 28 d following expo-
sure to an isolate. It is possible that individuals became infected
and cleared the virus prior to the end of the experiment. For ex-
ample, Fathead Minnow cells have been used to replicate FV3
in the laboratory for many decades (Green et al. 2009), yet no
individuals of this species were positive after 28 d in our study.
Short-duration infection could play a role in the epidemiology
of ranaviruses, especially where host densities are high. Future
transmission studies should consider euthanizing individuals at
different postexposure durations to document host susceptibil-
ity and improve our understanding of short- versus long-term
reservoirs.

Our results indicate that fish and aquatic turtles could func-
tion as reservoirs for FV3-like ranaviruses and, through com-
mercial trade, contribute to pathogen pollution (Cunningham
et al. 2003). In the United States, 662 million tons of catfish
(Hanson 2012) were produced in 2012, and 31.8 million turtles
including 17.5 million individual red-eared slider turtles were
sold between 2004 and 2005 (Brown et al. 2011; WCT 2013).
Our results suggest that fish and turtles infected with ranavirus
should be included in the World Organization for Animal Health
(OIE) standards for notifiable diseases (Schloegel et al. 2010).
Currently, amphibians infected with ranaviruses are the only
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taxonomic group listed in the OIE regulations (Schloegel et al.
2010).

Although our results showed that some fishes (Channel Cat-
fish and Western Mosquitofish) and turtles (Florida softshell
and Mississippi map turtles) are suitable hosts for FV3-like
ranaviruses, additional research is needed on other species in
North America. Additionally, experiments are needed to deter-
mine whether an infected individual of one vertebrate class can
transmit ranavirus through water to a different class. The ca-
pacity of fish and turtle species to transmit ranavirus to highly
susceptible hosts that inhabit aquatic environments seasonally
(e.g., amphibians) will help us understand the reoccurrences of
outbreaks in ecosystems with fluctuating species composition
(Pearman and Garner 2005; Teacher et al. 2010). This infor-
mation could be essential for the planning and execution of
conservation strategies for areas that exhibit recurrent ranavirus
outbreaks, as well as the identification of areas with risk of
ranaviral disease.
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