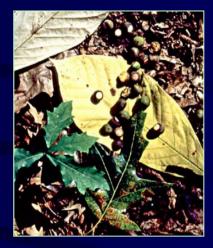

New Technology for Estimating Seed Yield in Moist-soil Wetlands

Matthew J. Gray Institute of Agriculture Wetlands Program

What do Ducks Eat??

Natural Foods

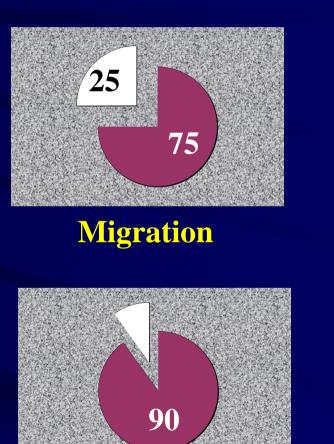

Agricultural Foods

Moist-soil Seeds

Tubers

Acorns

Aquatic Invertebrates



What do Dabbling Ducks Eat during Migration and Winter??

Energetically Costly Activities

Fall Migration
Courtship
Thermoregulation
Spring Migration

Providing Abundant Seed Food Resources!

Winter

Seeds are Primary Diet Item

Energy-rich 2.5 kcal / g

Importance of Moist-soil Wetlands

Seed Production:

450 kg/ha

Exceeds Acorns & Waste Grain!

Gray et al. (1999) •Managed: 1200 kg/ha (50% of Milo) •Unmanaged: 200 kg/ha

Kross et al. (2008)

•Managed/Unmanaged: 500 kg/ha

Quantifying Duck Energy-days

Prince 1979

Reinecke et al. 1989

DED

Reinecke and Loesch 1996

Food Available (g [dry]) x TME (kcal/g [dry])

Daily Energy Requirement (kcal/day)

We need <u>accurate</u> estimates of seed production!!

Estimating Available Food for DEDs

3 Methods:

1) Constants

•An estimate of mass from previous direct sampling or published yields (i.e., crops).

Ignores Management!

2) **Direct Estimate**

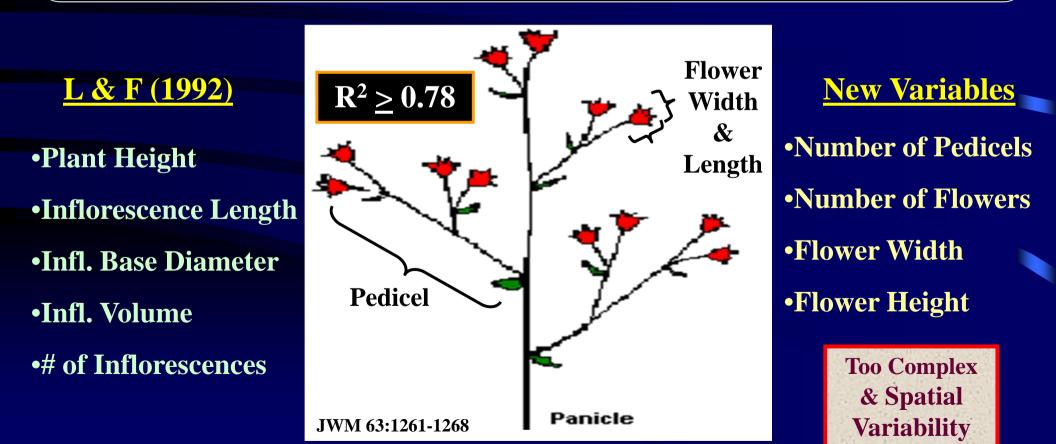
•An estimate of mass from <u>current direct</u> sampling in your wetland or ag areas.

3) Prediction Models

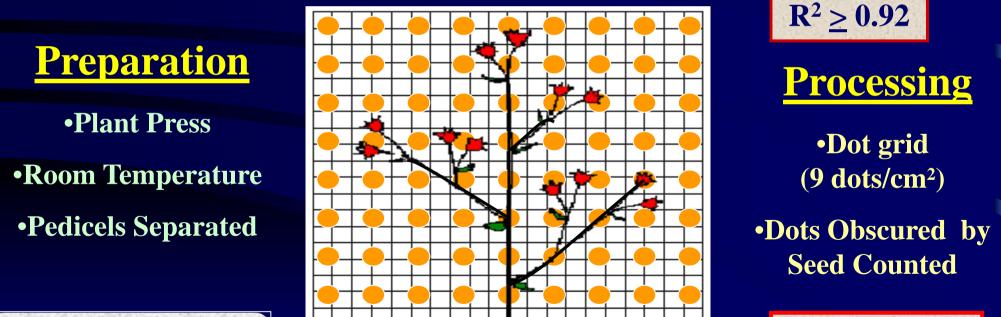
•An estimate of mass from <u>current indirect</u> sampling in your wetland or ag areas.

Estimating Food Resources Using Prediction Models

(Laubhan & Fredrickson 1992; Gray et al. 1999a,b; Sherfy & Kirkpatrick 1999)


Seed Yield = $\beta_0 + \beta_1$ (Plant Morphology)

Variables: Easy, fast, and strongly correlated with seed production!


Methods: Plant Morphological Study

5 species:: Echinochloa crusgalli, Cyperus erythrorhizos, Polygonum hydropiperoides, Panicum dichotomiflorum, Rynchospora globularis n = 60 plants/species/year, 1993 and 1994

Methods: Dot Study

5 species:: Echinochloa crusgalli, Setaria viridis, Panicum agrostoides, Panicum dichotomiflorum, Rynchospora globularis n = 30 plants/species/year, 1994

WSB 34:156-158 Conway, unpubl. data

JWM 63:1269-1272

Too Tedious &

Time Consuming!

Scanning Technology Prediction Models

Seed Head Area

Seed Production

Portable

Desktop

1-mm² Resolution

Very fast and accurate?

Objectives

- 1) Test if scanned seed-head area explained significant variation in seed mass
- 2) Compare amount of variation explained between portable and desktop scanners and the dot grid
- 3) Compare amount of time necessary to scan seeds and count dots obscured by seed
- 4) Develop prediction models for all three methods for use in moist-soil management

7 Common Moist-soil Plant Species

Plant Species

et rice cutgrass Elteri Leersia oryzoides

redroot flatsedge *Cyperus erythrorhizos*

barnyard grass Echinochloa crusgalli

Walter's millet Echinochloa walteri

red sprangletop *Leptochloa filiformis*

fall panicum Panicum dichotomiflorum

curlytop knotweed Polygonum lapathifolium

September 2005 & 2006

Collection Tennessee National Wildlife Refuge Duck River Unit

Clipped

Pressed & Stored

n = 30 plants per species per year

Lab Processing Dot Grid

Dots obscured by seed were counted

ADC BioScientific AM 300 Area Meter \$5500

Lab Processing Portable Scanner

Specifications

22 x 12 cm Contrast = 5 Contrast = 3 (rice cutgrass)

Larger Seed Heads Cut

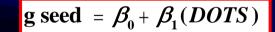
LI-COR LI-3100 Area Meter	Lab Processing	All
\$9600	Desktop Scanner	55
Specifications		45
25 cm (double)		Time
Length Not Limited		
		HE

Time Processed

Lab Processing

Thresh Seeds

Dry



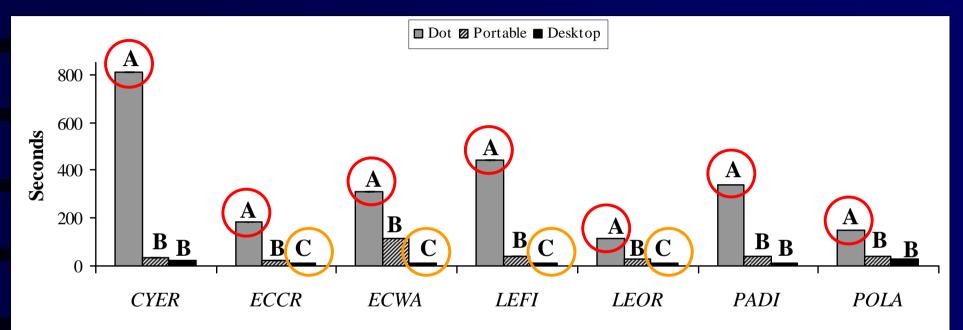
Weigh

Statistical Analyses

Models:

g seed =
$$\beta_0 + \beta_1 (Area Desk)$$

SLR •No Intercept •Year Indicator


Performance: •R² and R²_{predicted}

g seed =
$$\beta_0 + \beta_1 (Area_Port)$$

ANOVA: Did average processing time differ among techniques? (Tukey's HSD) $\alpha = 0.05$

Results:						
	Method	n	Equation	F	R ²	R ² _{pred}
redroot flatsedge	Dot	59	$Y = (0.002 \times DOTS) + 0.247$	964.2	0.970	0.968
i cui oor nucscuge	Portable	59	$Y = (0.016 \times AREA) - 0.023$	966.7	0.970	0.968 9'
	Desktop	59	$Y = (0.018 \times AREA) - 0.209$	1070.1	0.973	0.971
barnyard grass	Dot	60	$Y = (0.004 \times DOTS) - 0.044$	714.7	0.960	0.956
v B	Portable	60	$Y = (0.023 \times AREA) - 0.105$	968.3	0.970	0.968 96- 9
	Desktop	60	$y = (0.026 \times AREA) - 0.023$	982.2	0.970	0.968
Walter's millet	Dot	60	$Y = (0.003 \times DOTS) + 0.057$	1074.0	0.973	0.971
	Portable	60	$Y = (0.009 \times AREA) + 0.032$	1516.8	0.981	0.980 97- 9
	Desktop	60	$Y = (0.010 \times AREA) + 0.256$	1178.2	0.975	0.974
red sprangletop	Dot	59	$Y = (0.0009 \times DOTS) + 0.373$	456.2	0.939	0.933
	Portable	59	$Y = (0.007 \times AREA) + 0.421$	395.1	0.930	0.923 94-9
	Desktop	59	$Y = (0.008 \times AREA) + 0.301$	682.2	0.959	0.955
rice cutgrass	Dot	59	$Y = (0.001 \times DOTS) - 0.007$	1653.2	0.983	0.981
C	Portable	59	$Y = (0.007 \times AREA) + 0.021$	1273.9	0.977	0.976 98- 9
	Desktop	59	$Y = (0.009 \times AREA) + 0.009$	2664.8	0.989	0.989
fall panicum	Dot	58	$Y = (0.002 \times DOTS) - 0.213$	900.2	0.969	0.964
	Portable	58	$Y = (0.001 \times AREA) - 0.080$	7-97% 190.6	0.867	0.842
	Desktop	58	$Y = (0.023 \times AREA) - 0.281$	326.2	0.918	0.903
curlytop knotweed	Dot	62	$Y = (0.006 \times DOTS) - 0.019$	694.2	0.957	0.953
	Portable	62	$Y = (0.045 \times AREA) - 0.012$	1575.9	0.981	^{0.979} 96-9
	Desktop	62	$Y = (0.045 \times AREA) - 0.059$	1067.5	0.972	0.970

Results Processing Time

	Dot	Portable	Desktop
	•Longest = CYER	•Longest = ECWA	•Longest = CYER
	•Shortest = LEOR	•Shortest = ECCR	•Shortest = ECCR
Across Species:	Mean = 336 sec (5:40) R = 115 - 808 sec (13:30)	Mean = 45 sec R = 25 – 114 sec (1:54)	Mean = 15 sec R = 9 - 30 sec

What Conclusions Can Be Made?

Model Performance:

Strong Positive Relationship

•Dot grid and both scanners explained substantial variation! R² > 0.87

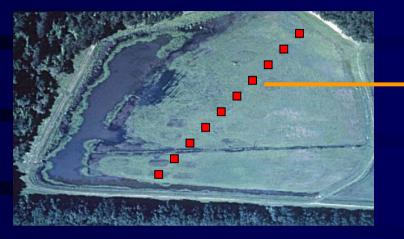
•All models had high predictive ability!

Processing Time:

•Dot Grid took 22X longer than desktop scanner

 $R^2_{\rm nred} > 0.84$

15 Seconds!


Portable Scanner took 3X longer than desktop scanner


Recommend Desktop Scanner Due to Efficiency

How To Use Models

Steps: 1)

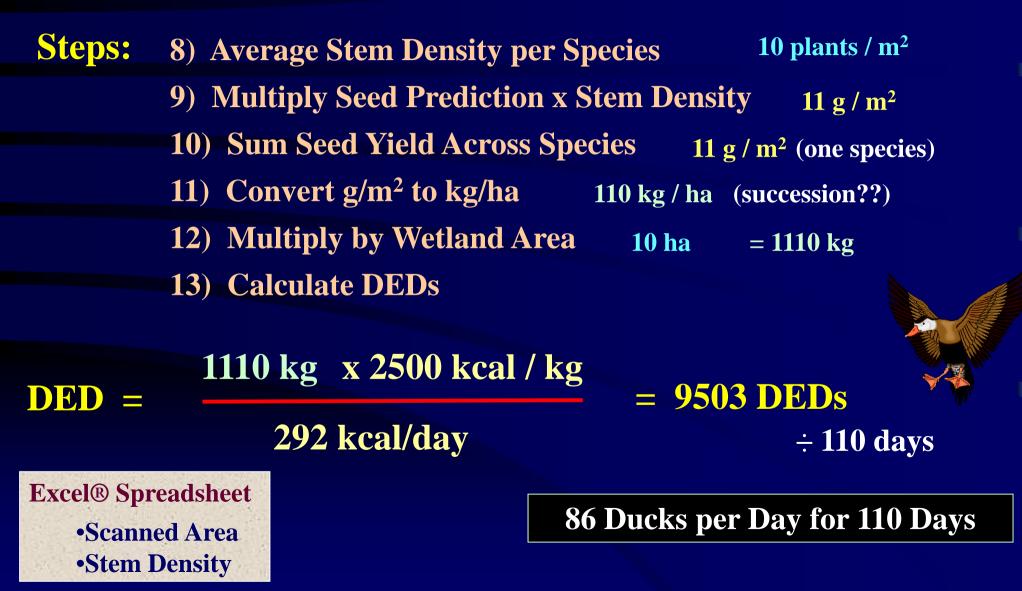
> Establish Survey **Locations**

Ten $1-m^2$ **Plots**

- 2) Count Stem Density
- 3) Collect Seed Head (s) from Plant
- 4) Bag and Press Seed Head

5) Scan Seed Head (or dots) Per Plant

- 50 cm^2 **6)** Average Scanned Area Per Species
 - 7) Predict Seed Yield Per Plant

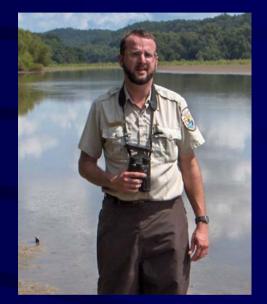

g seed = -0.203 + 0.026(Area)

g seed = -0.203 + 0.026(50)

1.1 g seed / plant

How To Use Models

Wetlands Program University of Tennessee-Knoxville



We'll Process Seed Heads for You! •\$20 / m² plot if seed heads are pressed Fees go to **UT Wildlife** •\$25 / m² plot if seed heads are not pressed **Students!** •\$800 per plant species to develop new models 1) Collect One Random Seed Head per Species per Plot Steps: n = 10 plots **Count Stem Density per Species per Plot** 2) 3) Press Seed Heads for One Week or Mail Directly to UT **Products per Impoundment:** •Seed Production and DED per Plant Species Total Seed Production and Total DED

Acknowledgments

Melissa Foster (Alex Pena)

Clayton Ferrell

Robert Wheat

•UT Institute of Agriculture

•U.S. Fish and Wildlife Service•Tennessee Wildlife Resources Agency

Questions

Gray, M. J., M. A. Foster, and L. A. Peña Peniche. 2009. New technology for estimating seed production of moist-soil plants. Journal of Wildlife Management 73:1229-1232.

Photo: M. Kaminski

http://fwf.ag.utk.edu/mgray/DED/DED.htm