Application of Unevenaged Management

Important Terminology, Concepts & Methodology

Uneven-aged Stands

2 Types Balanced Irregular

Uneven-aged stand = Intimate mixture of age classes

Balanced Uneven-aged Stands

- All-aged Forest
 - Every age class in the rotation is represented
 - Each age class represents approximately the same area
 - Regeneration of new trees would need to occur every year

Balanced Uneven-aged Stands

• The perfect "All-aged" stand is theoretical, it mostly exists only in the imagination

Balanced Uneven-aged Stands

- Even-spaced age class
 - More attainable
 - 3 or more age-classes evenly spaced over rotation (i.e., over a 5-year cutting cycle)

Irregular Uneven-aged Stands

- 3 or more age classes
- Stems are not evenly distributed throughout age classes

Some Terminology

- Silvicultural System
 - Process by which a forest is tended, harvested & regenerated to achieve management objectives
- Selection Method
 - Regeneration method or technique aimed at the creation and maintenance of uneven-aged stands
 (i.e., Indiv. tree, Group, Patch)
- Sustained Yield
 - Even-flow, non-declining, i.e., roughly the same cut every year

Sustained Yield Unit (SYU)

- Most commonly the SYU is the FOREST
- It is possible for the SYU to be the STAND
 - However, ABSOLUTELY NECESSARY to have a balanced distribution of age classes
 - You are harvesting the tail of the diameter distribution and creating conditions for progression of
 - smaller size classes

Regulation of the Cut

- Method by which the annual periodic cut is determined in order to attain a <u>Sustained Yield</u>
 - Two ways to look at this
 - Area Regulation
 - Volume Regulation

Area Regulation

- A management scheme to produce sustained yield at the forest level
 - NOT at the STAND level
- Does not create Uneven-Aged STANDS
 - Creates Uneven-aged FORESTS

Volume Regulation

- Removal of Annual or Periodic Growth
- All age classes grow in an INTIMATE MIXTURE
- Mature stems (Rotation age) harvested
 each year

• Financially mature stems harvest

Financial Maturity

- Tree or stand can be seen as an investment
- When growth falls below an alternative rate the stand or tree is said to be <u>financially mature</u>

Uneven-aged management entails:

- Maintaining trees of different age classes in the same area
- Calls for more or less equal, periodic harvests
- Under this practice, trees are removed on an individual basis to leave a desired number of trees in each size class Variety of goals can be met
- Each harvest stimulates reproduction of new trees and enhances the growth and yield of older trees.

Diameter Distributions

Regulation & Control

- Most straightforward & widely understood types of uneven-aged silviculture is single-tree selection
- Many early attempts failed b/c of inadequate regulation

Regulation & Control

- Cutting was concentrated in large size classes w/ little thought given to developing and maintaining a balanced diameter distribution
- High-quality, mature timber was removed first – after <u>repetition</u> this reduced ingrowth into the

sawtimber size classes

Diameter Limit Cut

- Most common practice of harvesting hardwood forests of North America
- High grades the forests by taking only the largest and best trees at every harvest.
 "Taking the BEST, Leaving the REST"
- Loggers and sawmillers often refer to this as select cutting or selection.
- It is poor forestry!

High-Grading

Definition

- Occurs when the residual stand has less value and potential value as the stand removed.
- Still widespread in Tennessee (Diameter-limit cutting)

High-Grading

- What's the Harm?
- Most stands in Tennessee are Even-aged
- Favors shade-tolerant species
- Shade-tolerant spp. in the TN tend to be less valuable (economically and sometimes biologically)
- What would happen if Oak spp. were replaced?

• What we have learned is that regulation requires control over:

- Diameter distribution
- Growing stock levels

Stocking Control

Stocking Control

- What stocking levels should be retained after the cut?
- Gross growth varies only slightly over a moderate range of stocking levels
 - 60 or 70% of full stocking enhances individual tree growth & stand growth
 - "Optimal" residual stocking varies with species & sizes of trees, diameter distribution, among others.

Control of Diameter Distribution

- Determining the desired number of trees or basal area to be retained in each diameter class
- "q" quotient

"q" quotient

- Expresses number of trees in successive diameter classes as a means of calculating a desired diameter distribution.
- Tends to be fairly constant in many undisturbed, uneven-aged stands.
- Represents the slope of the relationship (slope of the regression) between # of trees/ac and DBH.

"q" quotient (example)

If you had 100 trees in the 6 inch class & a "q" of 1.3 you would have 130 trees in the 5 inch class, 169 trees in the 4 inch class and so on ...

"q" quotient

- To set up a Diameter Distribution based on "q" you must decide upon three parameters:
 - Residual stocking
 - Maximum tree size (considering financial maturity and/or landowner objectives)
 - What "q" to use

What "q" to Use

- "q" normally varies between 1.3 and 2.0
- <u>Small "q"</u> tend to have higher proportions of the growing space devoted to <u>larger trees</u> (sawtimber)
- Stands managed with <u>higher "q</u>" values dominated by more trees in the <u>smaller size</u> <u>classes</u> (pulpwood, small product objectives)

Comparison of Stand Attributes with Varying "q" - values

	<i>Q</i> = 1.2	Q = 1.5	<i>Q</i> = 1.8
Stems per Acre	low	Medium	High
Size of Stems	More sawtimber – less repro	Less sawtimber – more repro	Least sawtimber – more repro
Seedling / Mature tree ratio	Low	Medium	High
Wildlife Hiding Cover	Low	Medium	High
Landowner Goals	More to timber	Compromise between timber & nesthetics	Least timber

Residual Stand Structure Goals

- Once goals for stocking, max. tree size & "q" have been set, it is simple to calculate stand structure goals.
 - Assign 1 tree to largest DBH then calculate successive smaller diameter classes with "q"
 - Calculate basal area of each DBH class & total basal area
 - Calculate for both target & actual, then compare

Target vs. Actual

Creation & Maintenance of Balanced Uneven-aged Stands

- Creation from Even-aged stands
 - Can be done, but requires some loss of growth potential
 - Usually takes time (full rotation removing a portion of the stand each cutt<u>ing cycle)</u>

Creation from Even-aged stands

- 50-year rotation
- 10-year cutting cycle enter stand once every 10 years
- Remove 1/5th of the stand each cutting cycle
 - If the decision was made when the stand was 80 yrs old – some 130 year old stems harvested

Creation from Even-aged stands

- If the stand was younger
 - Potentially harvesting immature stems early and overmature stems later in rotation
- In either case would suffer a financial loss loss in potential productivity
 - Losses may not be justified

Creation from Irregular Uneven-aged stands

- Can be done much faster
- But potential losses remain a consideration
- Must remove or harvest from all age classes
- Remember "q"

Harvest Cuts – Which trees are removed?

- Largest & usually oldest either as individuals or small groups
- Harvested trees represent the annual or periodic growth
- Replaced by regenerating stems (reproduction)

 this is repeated over time to create or maintain an uneven-aged stand
- Financial maturity overriding

factor

Other Considerations

- Trees at or above largest diameter may not want to cut if still vigorous and healthy
- High-risk trees not likely to make it to the next cycle disease or insects
- Poor form may want to remove poor genetic material or damaged stems
- Diameter distribution goals cut more heavily or lightly in a diameter class to

obtain proper diameter distribution

What about the Small Trees?

- Thinnings are required to regulate immature age or size classes
- Can not ignore represent future
- Density needs to be controlled to foster ingrowth and continuous regeneration
 - If ignored small stems will create a bump in the diameter distribution
 - Can cause loss in productivity & prohibit future regeneration
 - Pay attention to "q"

What Trees to Keep

(among immature classes)

- Those of the best quality, soundness & vigor
- Offering best probability of survival & growth
- The desired spp.

Modifications of the Selection Method

- Single Tree Selection
- Group Selection
- Strip Selection
- Dauerwald

Single Tree Selection

- Managing Individual stems
- Create openings (removal of mature stems) to regenerate new stems in once occupied space
- Remove sufficient numbers of mature trees to cover area allocated to that age class

Single Tree Selection

- Thin individual immature stems to balance the distribution
 - This redistributes proportional area among fewer stems
 - To optimize growth potential

Single Tree Selection

- Some species adapted:
 - Sugar maple
 - Beech
 - Hemlock
 - Red spruce
 - Grand fir
 - Engelmann spruce

Single Tree Criticisms

- Inability to regenerate shade-intolerant spp.
- Unwillingness to invest in tending of immature stems
- Unwillingness to invest in inventory to determine diameter distribution & needs for tending

Single Tree Criticisms

- Can be difficult with clustering of mature stems
- Difficult to minimize damage to the residual stand

Group Selection System

- Stems cut in small groups rather than as individuals
- Identify family groups of mature and immature trees
 - Harvest mature groups to open the canopy for new regeneration
 - Thin the family groups of immature stems to maintain balance

Group Selection

- Reasons to Use:
 - Species requirements
 - Intolerants do not regenerate in small openings created by single tree selection
 - By modifying the size and arrangements of the group cuts – create a wider range of environments - Create conditions most favorable for a particular species

Group Selection

• Reasons to Use:

- 1. Species requirements
 - Reproduction develops in small even-aged groups gives better form
 - Able to track age class development easier (easier to see)
 - Edge effect may be beneficial in establishment of some spp. can cause growth reduction later.
 Not good for phototropic spp.
 - i.e. hardwoods

Group Selection

- 2. Economics of harvesting
 - More economical to harvest groups less damage to residuals
- 3. Wildlife
 - More edge, more environmental conditions that produces a greater diversity of plants for cover, food source, etc...

Group Selection Praise

- Can increase chances for regenerating shade-intolerant species
- Semantics can turn into patch clearcutting if the size of the group is large – remember area

management

Group Selection Criticism

- Inventory ignores spatial distribution of family groups
- Unwillingness to tend immature groups
 - Failure to tend immature groups makes it a mere diameter-limit cut

Strip Selection

- Each age class in the stand is concentrated in long narrow strips
- Harvested on a cutting cycle to include one strip each entry
- Seldom used in the U.S.
- Advantage harvested material concentrated

Strip Selection

- Advantage less damage to reproduction
- Mostly used for montane watershed management – help increase snowpack
- Difficult to initiate, forces you to cut overmature & immature

stems to set up the system

Dauerwald

- German meaning continuous forest
- Each tree receives TLC
- Managing single trees instead of stands
- Used b/c of lack of land base in Europe
- Highly intensive management

Growth & Production

- Debate uneven-aged stands are more efficient in production of volume and value
 - First, Value may not be the case species dependent – in the southeast the most valuable species are generally intolerant

Growth & Production

- Second, Volume - Reproduction occurs under mature harvestable trees

- Less time for harvestable turnover
- Space for new cohort is not taken by mature stems • Better utilization of the site
- Greater volume has not been conclusively demonstrated through scientific investigation
- Debate continues on.....

Economics of Unevenaged Management

• Uneven-aged management may be appropriate for certain class of ownership

- Small Private Landowners

- Some small landowners have a limited land base and wish to obtain periodic returns on investment
- Especially if stand is already uneven-aged or two-aged – may be too costly to convert to even-age (time lag)

Small Landowner Example

- Situation small landowner (200 acres), stand has been high-graded by diameterlimit cuts (so it is two-age)
- Alternatives:
 - No management take what little stand produces
 - Convert to pine
 - Uneven-aged management proper use

Small Landowner Example

- Landowner has a desire to actively manage – improve production of stand
- Assume a rotation of 30 years
 - Costs site prep & planting (Even-aged), improvement cuts and added cost of harvesting (Uneven-aged)
 - Returns value from clearcut (even-aged), value from yearly harvest (Uneven-aged)

Small Landowner Example

- Returns are more for plantation management
- Reasons why uneven-aged management might still be acceptable
 - Large initial investment in plantation
 - Multiple objectives wildlife, aesthetics, timber

- In the past we have given landowners the alternative of even-aged or nothing
- Many simply not willing to employ evenaged or plantation management

Other Partial Cuttings

Non-harmful cuttings Do Not:

- Preclude regeneration
- Upset soils or expose them for long times
- Plug up natural drainages or change landforms

Cuttings outside this Silvicultural System:

- Give irregular yields of unpredictable amounts
- Take a chance on spp. composition of regeneration
- Accept non-uniform distribution of growing stock

Selective Cutting not Selection

- Creaming, culling or high-grading
- Diameter-limit cutting
- Exploitation that removes certain trees of high value without regards to regeneration
- Known silvical requirements & sustained yield being wholly or largely ignored

Advantages & Disadvantages

as compared to even-aged management

- Advantages
 - Seed source more assured
 - Better protection of site
 - Less danger of fire
 - Aesthetically more pleasing
 - Sawtimber quality could be better – debate
 - Less susceptible to insects or pathogens

Advantages & Disadvantages

as compared to even-aged management

- Disadvantages
 - Harvesting is not concentrated more costly
 - More supervision & expertise required
 - More damage to reproduction & residuals
 - Less chance for selecting for better genotypes
 - Difficult to manage & evaluate

Summary

- Favors tolerant spp. equates to less valuable timber in TN
- Cost of operation is greater larger area impacted for similar extraction
- Damage to residuals & reproduction
- For method to be effective, must be diligent in cutting in all size/age classes

Summary

- Markets for all materials are needed
- More expertise & time needed for proper implementation
- Danger of method degenerating to highgrading & diameter-limit cutting unless proper care is taken

to promote all size/age

classes

